scholarly journals Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy

Oncogenesis ◽  
2015 ◽  
Vol 4 (11) ◽  
pp. e177-e177 ◽  
Author(s):  
A Borah ◽  
S Raveendran ◽  
A Rochani ◽  
T Maekawa ◽  
D S Kumar
2019 ◽  
Vol 14 (5) ◽  
pp. 428-436 ◽  
Author(s):  
Gabriele D. Bigoni-Ordóñez ◽  
Daniel Czarnowski ◽  
Tyler Parsons ◽  
Gerard J. Madlambayan ◽  
Luis G. Villa-Diaz

Cancer is a highly prevalent and potentially terminal disease that affects millions of individuals worldwide. Here, we review the literature exploring the intricacies of stem cells bearing tumorigenic characteristics and collect evidence demonstrating the importance of integrin α6 (ITGA6, also known as CD49f) in cancer stem cell (CSC) activity. ITGA6 is commonly used to identify CSC populations in various tissues and plays an important role sustaining the self-renewal of CSCs by interconnecting them with the tumorigenic microenvironment.


Author(s):  
Nese Unver

: Cancer stem cells represent a rare subpopulation of cancer cells carrying self-renewal and differentiation features in the multi-step tumorigenesis, tumor recurrence and metastasis. Pro-inflammatory stress is highly associated with cancer stemness via induction of cytokines, tumor-promoting immune cells and cancer stemness-related signaling pathways. This review summarizes the major pro-inflammatory factors affecting cancer stem cell characteristics and the critical immunotherapeutic strategies to eliminate cancer stem cells.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2168
Author(s):  
Balawant Kumar ◽  
Rizwan Ahmad ◽  
Swagat Sharma ◽  
Saiprasad Gowrikumar ◽  
Mark Primeaux ◽  
...  

Background: Despite recent advances in therapies, resistance to chemotherapy remains a critical problem in the clinical management of colorectal cancer (CRC). Cancer stem cells (CSCs) play a central role in therapy resistance. Thus, elimination of CSCs is crucial for effective CRC therapy; however, such strategies are limited. Autophagy promotes resistance to cancer therapy; however, whether autophagy protects CSCs to promote resistance to CRC-therapy is not well understood. Moreover, specific and potent autophagy inhibitors are warranted as clinical trials with hydroxychloroquine have not been successful. Methods: Colon cancer cells and tumoroids were used. Fluorescent reporter-based analysis of autophagy flux, spheroid and side population (SP) culture, and qPCR were done. We synthesized 36-077, a potent inhibitor of PIK3C3/VPS34 kinase, to inhibit autophagy. Combination treatments were done using 5-fluorouracil (5-FU) and 36-077. Results: The 5-FU treatment induced autophagy only in a subset of the treated colon cancer. These autophagy-enriched cells also showed increased expression of CSC markers. Co-treatment with 36-077 significantly improved efficacy of the 5-FU treatment. Mechanistic studies revealed that combination therapy inhibited GSK-3β/Wnt/β-catenin signaling to inhibit CSC population. Conclusion: Autophagy promotes resistance to CRC-therapy by specifically promoting GSK-3β/Wnt/β-catenin signaling to promote CSC survival, and 36-077, a PIK3C3/VPS34 inhibitor, helps promote efficacy of CRC therapy.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 54
Author(s):  
Margaret L. Dahn ◽  
Paola Marcato

Cancer stem cells (CSCs) are functionally defined in our laboratories by their impressive tumor-generating and self-renewal capacity; clinically, CSCs are of interest because of their enhanced capacity to evade conventional therapies [...]


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianyu Wang ◽  
Doudou Liu ◽  
Zhiwei Sun ◽  
Ting Ye ◽  
Jingyuan Li ◽  
...  

AbstractIt has been postulated that cancer stem cells (CSCs) are involved in all aspects of human cancer, although the mechanisms governing the regulation of CSC self-renewal in the cancer state remain poorly defined. In the literature, both the pro- and anti-oncogenic activities of autophagy have been demonstrated and are context-dependent. Mounting evidence has shown augmentation of CSC stemness by autophagy, yet mechanistic characterization and understanding are lacking. In the present study, by generating stable human lung CSC cell lines with the wild-type TP53 (A549), as well as cell lines in which TP53 was deleted (H1229), we show, for the first time, that autophagy augments the stemness of lung CSCs by degrading ubiquitinated p53. Furthermore, Zeb1 is required for TP53 regulation of CSC self-renewal. Moreover, TCGA data mining and analysis show that Atg5 and Zeb1 are poor prognostic markers of lung cancer. In summary, this study has elucidated a new CSC-based mechanism underlying the oncogenic activity of autophagy and the tumor suppressor activity of p53 in cancer, i.e., CSCs can exploit the autophagy-p53-Zeb1 axis for self-renewal, oncogenesis, and progression.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kristen Abernathy ◽  
Jeremy Burke

Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels.


2012 ◽  
Vol 1826 (2) ◽  
pp. 385-399 ◽  
Author(s):  
Jun Xia ◽  
Changjie Chen ◽  
Zhiwen Chen ◽  
Lucio Miele ◽  
Fazlul H. Sarkar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document