In Vitro Cytogenetic Assays: Chromosomal Aberrations and Micronucleus Tests

Author(s):  
Pasquale Mosesso ◽  
Serena Cinelli
Author(s):  
Pasquale Mosesso ◽  
Serena Cinelli ◽  
Adyapalam T. Natarajan ◽  
Fabrizio Palitti

2018 ◽  
Vol 21 (4) ◽  
pp. 262-270 ◽  
Author(s):  
Zehao Huang ◽  
Na Li ◽  
Kaifeng Rao ◽  
Cuiting Liu ◽  
Zijian Wang ◽  
...  

Background: More than 2,000 chemicals have been used in the tannery industry. Although some tannery chemicals have been reported to have harmful effects on both human health and the environment, only a few have been subjected to genotoxicity and cytotoxicity evaluations. Objective: This study focused on cytotoxicity and genotoxicity of ten tannery chemicals widely used in China. Materials and Methods: DNA-damaging effects were measured using the SOS/umu test with Salmonella typhimurium TA1535/pSK1002. Chromosome-damaging and cytotoxic effects were determined with the high-content in vitro Micronucleus test (MN test) using the human-derived cell lines MGC-803 and A549. Conclusion: The cytotoxicity of the ten tannery chemicals differed somewhat between the two cell assays, with A549 cells being more sensitive than MGC-803 cells. None of the chemicals induced DNA damage before metabolism, but one was found to have DNA-damaging effects on metabolism. Four of the chemicals, DY64, SB1, DB71 and RR120, were found to have chromosome-damaging effects. A Quantitative Structure-Activity Relationship (QSAR) analysis indicated that one structural feature favouring chemical genotoxicity, Hacceptor-path3-Hacceptor, may contribute to the chromosome-damaging effects of the four MN-test-positive chemicals.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Juliana Marques Senedese ◽  
Aline Rafaela Rodrigues ◽  
Michelle Andrade Furtado ◽  
Viviane Dias Faustino ◽  
Andresa A. Berretta ◽  
...  

Propolis possesses various biological activities such as antibacterial, antifungal, anti-inflammatory, anesthetic and antioxidant properties. A topically applied product based on Brazilian green propolis was developed for the treatment of burns. For such substance to be used more safely in future clinical applications, the present study evaluated the mutagenic potential of topical formulations supplemented with green propolis extract (1.2, 2.4 and 3.6%) based on the analysis of chromosomal aberrations and of micronuclei. In thein vitrostudies, 3-h pulse (G1phase of the cell cycle) and continuous (20 h) treatments were performed. In thein vivoassessment, the animals were injured on the back and then submitted to acute (24 h), subacute (7 days) and subchronic (30 days) treatments consisting of daily dermal applications of gels containing different concentrations of propolis. Similar frequencies of chromosomal aberrations were observed for cultures submitted to 3-h pulse and continuous treatment with gels containing different propolis concentrations and cultures not submitted to any treatment. However, in the continuous treatment cultures treated with the 3.6% propolis gel presented significantly lower mitotic indices than the negative control. No statistically significant differences in the frequencies of micronuclei were observed between animals treated with gels containing different concentrations of propolis and the negative control for the three treatment times. Under the present conditions, topical formulations containing different concentrations of green propolis used for the treatment of burns showed no mutagenic effect in either test system, but 3.6% propolis gel was found to be cytotoxic in thein vitrotest.


2021 ◽  
Vol 98 (5) ◽  
pp. 548-557
Author(s):  
E. A. Jain ◽  
D. Pleimes ◽  
A. A. Globenko

Introduction. The antiviral properties of imidazolyl ethanamide pentandioic acid (IPA), the active compound of the drug product, has been proven in various experimental models. However, the literature data on the toxicological properties of IPA are limited.Purpose. To evaluate mutagenic and genotoxic properties in in vitro and in vivo models, as well as to study the toxicity of IPA following chronic oral administration to rats and dogs.Materials and methods. Mutagenic and genotoxic properties of IPA were assessed using the Ames test, the test of chromosomal aberrations in human lymphocytes, and the micronucleus test in rats. The chronic toxicity of IPA was studied in Sprague Dawley rats and beagle dogs of both sexes, to which IPA was administered orally at doses of 30-300 mg/kg/day for 26 and 39 weeks, respectively.Results and discussion. In the Ames test, the addition of IPA up to the maximum dose (5000 mcg/plate) did not result in the increase in the number of revertant colonies. At a concentration of up to 5000 mcg/ml, IPA did not cause chromosomal aberrations in human leukocytes. At doses doses ≤ 2000 mg/kg, IPA did not increase the amount of micronuclei in the bone marrow of rats. In chronic experiments, animals tolerated the administration of IPA well: the dose without an observed effect (NOEL) for rats and dogs was 300 mg/kg/day.Conclusion. IPA did not show mutagenic and genotoxic properties in standard in vitro and in vivo tests. With chronic oral administration to rats and dogs, NOEL IPA equal to 300 mg/kg/day provided a systemic exposure that was 8-10 and 41-65 times higher than that in humans, respectively. The results obtained allow us to consider the safety profile of the prolonged use in humans as favorable.


1977 ◽  
Vol 70 (1) ◽  
pp. 187 ◽  
Author(s):  
J. Haag ◽  
J. Brenot ◽  
N. Parmentier

Sign in / Sign up

Export Citation Format

Share Document