cell growth suppression
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 13)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi4-vi5
Author(s):  
Masahiro Yamamoto ◽  
Chifumi Kitanaka

Abstract BACKGROUND: Malignant meningioma is an aggressive tumor that requires adjuvant radiotherapy after surgery, yet there has been no standard systemic therapy established so far. We have demonstrated that malignant meningioma cells are exquisitely sensitive to gemcitabine due to their increased expression of hENT1 and dCK, which play critical roles in the intracellular transport and activation of gemcitabine, respectively (Takeda et al. Oncotarget 8:90996, 2017; Yamamoto et al., Neuro-Oncol 23:945, 2021). Significantly, in support of our findings, the efficacy and safety of gemcitabine have recently been documented in a small case series of patients with recurrent meningiomas, which has further led to a phase 2 clinical trial to evaluate the efficacy of gemcitabine in recurrent high-grade meningiomas (Khaddar et al., South Asian J Cancer 9:261, 2020). Besides its efficacy as a single agent, gemcitabine reportedly has a radiosensitizing effect in pancreatic cancer. However, it remains unknown whether or how gemcitabine interacts with ionizing radiation (IR) in malignant meningioma cells. METHODS: We examined radiosensitization effects of gemcitabine using malignant meningioma cell lines and xenografts (s.c. and i.c.) and explored the underlying mechanisms. RESULTS: Gemcitabine sensitized malignant meningioma cells remarkably to IR through the induction of senescence both in vitro and in vivo. Gemcitabine augmented the intracellular production of reactive oxygen species (ROS) by IR, which, together with cell growth suppression/senescence induced by this combination, was inhibited by N-acetyl-cysteine, suggesting a pivotal role for ROS in these combinatorial effects. Navitoclax, a senolytic drug, further enhanced the effects of the combination of gemcitabine and IR in vitro and in vivo by strongly inducing apoptotic cell death in senescent cells. CONCLUSION: These results suggest that gemcitabine is not only a promising radiosensitizer for malignant meningioma but also creates in combination with IR a therapeutic vulnerability of senescent meningioma cells to senolytics. (submitted for publication)


Author(s):  
Masahiro Yamamoto ◽  
Tomomi Sanomachi ◽  
Shuhei Suzuki ◽  
Keita Togashi ◽  
Asuka Sugai ◽  
...  

Abstract Background Malignant meningioma is an aggressive tumor that requires adjuvant radiotherapy after surgery, yet there has been no standard systemic therapy established so far. We recently reported that malignant meningioma cells are highly sensitive to gemcitabine; however, it remains unknown whether or how gemcitabine interacts with ionizing radiation (IR) in malignant meningioma cells. Methods We examined radiosensitization effects of gemcitabine using malignant meningioma cell lines and xenografts and explored the underlying mechanisms. Results Gemcitabine sensitized malignant meningioma cells to IR through the induction of senescence both in vitro and in vivo. Gemcitabine augmented the intracellular production of reactive oxygen species (ROS) by IR, which, together with cell growth suppression/senescence induced by this combination, was inhibited by N-acetyl-cysteine, suggesting a pivotal role for ROS in these combinatorial effects. Navitoclax, a senolytic drug that inhibits Bcl-2 proteins, further enhanced the effects of the combination of gemcitabine and IR by strongly inducing apoptotic cell death in senescent cells. Conclusion These results not only indicate the potential of gemcitabine as a candidate radiosensitizer for malignant meningioma, but also reveal a novel role for gemcitabine radiosensitization as a means to create a therapeutic vulnerability of senescent meningioma cells to senolytics.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4032
Author(s):  
Kadie Edwards ◽  
Seydou Yao ◽  
Simone Pisano ◽  
Veronica Feltracco ◽  
Katja Brusehafer ◽  
...  

Histone Deacetylase (HDAC) enzymes are upregulated in cancer leading to the development of HDAC inhibiting compounds, several of which are currently in clinical trials. Side effects associated with toxicity and non-specific targeting indicate the need for efficient drug delivery approaches and tumor specific targeting to enhance HDAC efficacy in solid tumor cancers. SAHA encapsulation within F127 micelles functionalized with a surface hyaluronic acid moiety, was developed to target endometrial cancer cells expressing elevated levels of CD44. In vitro viability and morphology analyses was conducted in both 2D and 3D models to assess the translational potential of this approach. Encapsulation enhanced SAHA delivery and activity, demonstrating increased cytotoxic efficacy in 2D and 3D endometrial cancer models. High-content imaging showed improved nanoparticle internalization in 2D and CD44 enhanced penetration in 3D models. In addition, the nano-delivery system enhanced spheroid penetration resulting in cell growth suppression, p21 associated cell cycle arrest, as well as overcoming the formation of an EMT associated phenotype observed in free drug treated type II endometrial cancer cells. This study demonstrates that targeted nanoparticle delivery of SAHA could provide the basis for improving its efficacy in endometrial cancer. Using 3D models for endometrial cancer allows the elucidation of nanoparticle performance and CD44 targeting, likely through penetration and retention within the tumor model.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hamed Mir ◽  
Daniel Elieh Ali Komi ◽  
Mahdi Pouramir ◽  
Hadi Parsian ◽  
Ali Akbar Moghadamnia ◽  
...  

Abstract Objective In present study, the effects of the leaf extract of Pyrus biossieriana Buhse on tert-Butyl hydroperoxide (t-BHP) induced toxicity in the HepG2 cell line were investigated. Results HepG2 cells were exposed to different concentrations of both extract (1.5, 2.0, and 2.5 mg/mL) and t-BHP (100, 150, and 200 μM). The total flavonoid and phenolic contents, the cell viability, lipid peroxidation, NO generation, and the total antioxidant capacity in cell media were assessed. The amount of arbutin was estimated 12.6% of the dry weight of leaves (equivalent to 126 mg/g). Additionally, the amounts of flavonoids and phenols in extract were estimated 119 mg/g and 418 mg/g, respectively. The cells incubated with t-BHP showed a significant decrease in survival (p < 0.001). Preincubation with extract (1.5 mg/mL and 2.0 mg/mL) attenuated the t-BHP toxicity and increased the cell viability in cells exposed even to the highest concentration of t-BHP (200 μM) (p value < 0.001, and p value = 0.035) respectively. Additionally, treatment with extract reduced the cell growth suppression caused by t-BHP. The P. biossieriana Buhse leaf extract at concentrations of 1.5 and 2.0 mg/mL is capable of attenuating t-BHP-induced cytotoxicity in HepG2 cells.


2021 ◽  
Vol 10 ◽  
Author(s):  
Shu-Guang Su ◽  
Qiu-Li Li ◽  
Mei-Fang Zhang ◽  
Peng-Wei Zhang ◽  
Huimin Shen ◽  
...  

Hepatocellular carcinoma (HCC) accounts for one of the leading causes of cancer-related death, and is attributed to the dysregulation of genes involved in genome stability. DDX11, a DNA helicase, has been implicated in rare genetic disease and human cancers. Yet, its clinical value, biological function, and the underlying mechanism in HCC progression are not fully understood. Here, we show that DDX11 is upregulated in HCC and exhibits oncogenic activity via EZH2/p21 signaling. High expression of DDX11 is significantly correlated with poor outcomes of HCC patients in two independent cohorts. DDX11 overexpression increases HCC cell viabilities and colony formation, whereas DDX11 knockdown arrests cells at G1 phase without alteration of p53 expression. Ectopic expression of DDX11 reduces, while depletion of DDX11 induces the expression of p21. Treatment of p21 siRNA markedly attenuates the cell growth suppression caused by DDX11 silence. Further studies reveal that DDX11 interacts with EZH2 in HCC cells to protect it from ubiquitination-mediated protein degradation, consequently resulting in the downregulation of p21. In addition, E2F1 is identified as one of the upstream regulators of DDX11, and forms a positive feedback loop with EZH2 to upregulate DDX11 and facilitate cell proliferation. Collectively, our data suggest DDX11 as a promising prognostic factor and an oncogene in HCC via a E2F1/DDX11/EZH2 positive feedback loop.


2021 ◽  
Vol 10 (1) ◽  
pp. e48810111978
Author(s):  
Paulo Pedro de Freitas ◽  
Israel Faustino dos Santos ◽  
Denise Macedo da Silva ◽  
Cristiane Araújo Nascimento ◽  
Ana Caroline Melo dos Santos ◽  
...  

Introduction: Insulin-like growth factor binding protein -3 (IGFBP3) is the main mediator of IGF-1/IGF-1R binding, and may inhibit the binding between IGF-1 and IGF-1R and trigger cell growth suppression. Method: This study is a systematic review in which searches were conducted in Pubmed, Web of science, Science direct and Scopus databases for studies published in the period 2010-2020, including case-control studies that evaluated the association of polymorphisms in the IGFBP3 gene with cancer. Results: Of the 6 studies included, 5 were conducted in China and 1 in Iran, published in 2015 (n=2), 2014 (n=2), 2013 (n=1) and 2011 (n=1). In all, there were 5 types of cancer studied: esophagus (n=2), prostate (n=1), colorectal (n=1), breast (n=1) and gastric (n=1). In the studies chosen, 8 SNPs located in the IGFBP3 gene were evaluated: rs2854744, rs2854746, rs2132572, rs9282734, rs3110697, rs2960436, rs2270628 and rs10282088. Only the Zhao et al studies. (2015) and Liu et al. (2015) found a relationship between SNPs in the IGFBP3 gene with cancer. Two studies (Qian et al., 2014 and Qian et al., 2011) did not describe allelic frequencies in their results. Conclusion: Based on the studies we can demonstrate that the findings on the association of polymorphisms in the IGFBP3 gene with cancers are confusing, divergent and the role of the IGF pathway in carcinogenesis has not been clearly defined. However, the studies bring strong evidence that suggests possible relationships of this pathway and genetic variants with the carcinogenesis process in several types of cancer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marina Makrecka-Kuka ◽  
Pavels Dimitrijevs ◽  
Ilona Domracheva ◽  
Kristaps Jaudzems ◽  
Maija Dambrova ◽  
...  

AbstractThe development of targeted drugs for the treatment of cancer remains an unmet medical need. This study was designed to investigate the mechanism underlying breast cancer cell growth suppression caused by fused isoselenazolium salts. The ability to suppress the proliferation of malignant and normal cells in vitro as well as the effect on NAD homeostasis (NAD+, NADH, and NMN levels), NAMPT inhibition and mitochondrial functionality were studied. The interactions of positively charged isoselenazolium salts with the negatively charged mitochondrial membrane model were assessed. Depending on the molecular structure, fused isoselenazolium salts display nanomolar to high micromolar cytotoxicities against MCF-7 and 4T1 breast tumor cell lines. The studied compounds altered NMN, NAD+, and NADH levels and the NAD+/NADH ratio. Mitochondrial functionality experiments showed that fused isoselenazolium salts inhibit pyruvate-dependent respiration but do not directly affect complex I of the electron transfer system. Moreover, the tested compounds induce an immediate dramatic increase in the production of reactive oxygen species. In addition, the isoselenazolothiazolium derivative selectively binds to cardiolipin in a liposomal model. Isoselenazolium salts may be a promising platform for the development of potent drug candidates for anticancer therapy that impact mitochondrial pyruvate-dependent metabolism in breast cancer cells.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3312
Author(s):  
Nobuhiko Sugito ◽  
Kazuki Heishima ◽  
Yuko Ito ◽  
Yukihiro Akao

Rhabdomyosarcoma (RMS) is a soft tissue sarcoma most frequently found in children. In RMS, there are two major subtypes, embryonal RMS (ERMS) and alveolar RMS (ARMS). ARMS has the worse prognosis of the two owing to the formation of the chimeric PAX3–FOXO1 gene. A novel therapeutic method is required for treating ARMS. In our previous study, we found that the ectopic expression of chemically modified MIR143-3p#12 (CM-MIR143#12), which is RNase-resistant and shows the highest anti-proliferation activity among the synthesized MIR143 derivatives that were tested, induces significant cell growth suppression by targeting KRAS, AKT, and ERK in colorectal cancer cells. The expression of MIR143-3p in RMS was dramatically downregulated compared with that of normal tissue. Ectopic expression of CM-MIR143#12 in RMS cells resulted in a significant growth inhibitory effect through the induction of apoptosis and autophagy. Interestingly, we found that CM-MIR143#12 also silenced the expression of chimeric PAX3–FOXO1 directly and, using siR-KRAS or siR-AKT, that KRAS networks regulated the expression of PAX3–FOXO1 in ARMS cells. In ERMS harboring NRAS mutation, CM-MIR143#12 silenced mutated NRAS. These findings indicate that CM-MIR143#12 efficiently perturbed the RAS signaling pathway, including the ARMS-specific KRAS/PAX3–FOXO1 networks.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jing Zhang ◽  
Huahua Zhang ◽  
Haiyan Shi ◽  
Fenghui Wang ◽  
Juan Du ◽  
...  

We aim to investigate the role of THAP11 (thanatos-associated protein11) in gastric cancer and its regulation mechanisms. THAP11 expression was analyzed in 51 pairs of GC tissues and the corresponding paracancerous tissues by qRT-PCR and Western blot. After THAP11 was overexpressed or knocked-down, cell proliferation, cell cycle, and apoptosis were detected in MKN-45 cells. We found that THAP11 was significantly downregulated in GC tissues and GC cell lines. Functionally, THAP11 overexpression markedly inhibited cell growth, induced G1/G0 cell-cycle arrest, and promoted cell apoptosis of MKN-45 cells, while silencing of THAP11 led to increased cell growth, increased DNA synthesis, and inhibited apoptosis. In addition, THAP11 negatively regulated the expression of c-Myc, decreased cyclinD1 protein, and increased p27 and p21 protein levels. We also found cell growth suppression induced by THAP11 was rescued by c-Myc overexpression, further confirming that THAP11 suppresses gastric cancer cell growth via the c-Myc pathway. THAP11 acts as a cell growth suppressor and exerts its role possibly through negatively regulating c-Myc pathway in gastric cancer.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1374
Author(s):  
Mahoko Sano ◽  
Makoto Izumiya ◽  
Hisao Haniu ◽  
Katsuya Ueda ◽  
Kosuke Konishi ◽  
...  

One of the greatest challenges to overcome in the pursuit of the medical application of carbon nanomaterials (CNMs) is safety. Particularly, when considering the use of CNMs in drug delivery systems (DDSs), evaluation of safety at the accumulation site is an essential step. In this study, we evaluated the toxicity of carbon nanohorns (CNHs), which are potential DDSs, using human lymph node endothelial cells that have been reported to accumulate CNMs, as a comparison to fibrous, multi-walled carbon nanotubes (MWCNTs) and particulate carbon black (CB). The effect of different surface characteristics was also evaluated using two types of CNHs (untreated and oxidized). In the fibrous MWCNT, cell growth suppression, as well as expression of inflammatory cytokine genes was observed, as in previous reports. In contrast, no significant toxicity was observed for particulate CB and CNHs, which was different from the report of CB cytotoxicity in vascular endothelial cells. These results show that (1) lymph endothelial cells need to be tested separately from other endothelial cells for safety evaluation of nanomaterials, and (2) the potential of CNHs as DDSs.


Sign in / Sign up

Export Citation Format

Share Document