Cancer Cell Receptor Internalization and Proliferation: Effects of Neuropeptide Analogs

Author(s):  
Terry W. Moody ◽  
Michael Schumann ◽  
Robert T. Jensen
2021 ◽  
Author(s):  
Yanqiu Zhang ◽  
Yue Li ◽  
Yuhua Fan ◽  
Baoshan Zhao ◽  
Huan Liang ◽  
...  

Abstract Background: Glioma is a fatal malignancy caused by dysregulation of cellular signal transduction. Internalization plays a key role in maintaining signalling balance. SorCS3 is involved in nerve cell receptor internalization. However, the impact of SorCS3 on the biological processes involved in glioma has not yet been reported. Here, we highlight the potential of SorCS3-mediated regulation of signalling receptor internalization as a rational target for therapeutic intervention in glioma.Methods: SorCS3 expression was analysed in the TCGA and CGGA databases and in tissue microarrays. The effects of SorCS3 on the proliferation and metastasis of glioma cells were examined in vitro and in vivo with Transwell, wound healing, EdU incorporation and nude mouse tumorigenicity assays. Fluorescent 5-FAM, SE-labelled proteins were used to detect the internalization of SorCS3 in glioma cells. Immunofluorescence and Co-IP assays were conducted to investigate the downstream effector of SorCS3. Moreover, Dynasore and Ro 08-2750, inhibitors of internalization and NGF binding to p75NTR, respectively, were used to validate the biological functions of SorCS3 in glioma.Results: Our data demonstrated that SorCS3 was downregulated in glioma tissues and closely related to favourable prognosis. Overexpression of SorCS3 inhibited the proliferation and metastasis of glioma cells in vitro and in vivo, while silencing of SorCS3 exerted the opposite effects. Mechanistic investigations showed that SorCS3 bound to p75NTR, which subsequently increased the internalization of p75NTR, and then transported p75NTR to the lysosome for degradation, ultimately contributing to inhibition of glioma progression.Conclusions: Our work suggests that SorSC3 is a marker of promising prognosis in glioma patients and suggests that SorCS3 regulates internalization, which plays an important role in inhibiting glioma progression.


2017 ◽  
Vol 4 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Kshitij Gupta ◽  
Anu Puri ◽  
Bruce A. Shapiro

AbstractRNA interference (RNAi) has been regarded as a vital asset in the field of therapeutics as it has the capability to silence various disease causing genes including those that cause cancer. Small non-coding RNA molecules such as short interfering RNAs (siRNAs) are one of the extensively studied RNAi inducers for gene modulations. However, the delivery of RNAi inducers including siRNAs is compromised due to the barriers imposed by the biological system such as degradation by nucleases, rapid clearance, high anionic charge, immunogenicity and off-target effects. Viral vectors, in general exhibit high transfection efficiencies but are expensive and likely to confer immunological and safety issues. Therefore, non-viral cationic vectors (NVCVs) have received considerable attention to not only address these issues but also for developing efficacious siRNA delivery vectors. In this review, we will first discuss the historical development of various NVCVs and then will discuss functionalized NVCVs with linkers that provide stability, as well as respond to the cancer cell environment and with cancer cell receptor specific ligands to explicitly target them for improved siRNA efficacy. Multifunctional NVCVs (MNVCVs) that employ multiple synergistically working components to aid siRNA delivery efficacy are also discussed.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Erwan Beauchamp ◽  
Megan C. Yap ◽  
Aishwarya Iyer ◽  
Maneka A. Perinpanayagam ◽  
Jay M. Gamma ◽  
...  

Abstract Myristoylation, the N-terminal modification of proteins with the fatty acid myristate, is critical for membrane targeting and cell signaling. Because cancer cells often have increased N-myristoyltransferase (NMT) expression, NMTs were proposed as anti-cancer targets. To systematically investigate this, we performed robotic cancer cell line screens and discovered a marked sensitivity of hematological cancer cell lines, including B-cell lymphomas, to the potent pan-NMT inhibitor PCLX-001. PCLX-001 treatment impacts the global myristoylation of lymphoma cell proteins and inhibits early B-cell receptor (BCR) signaling events critical for survival. In addition to abrogating myristoylation of Src family kinases, PCLX-001 also promotes their degradation and, unexpectedly, that of numerous non-myristoylated BCR effectors including c-Myc, NFκB and P-ERK, leading to cancer cell death in vitro and in xenograft models. Because some treated lymphoma patients experience relapse and die, targeting B-cell lymphomas with a NMT inhibitor potentially provides an additional much needed treatment option for lymphoma.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ulrika Norin ◽  
Carola Rintisch ◽  
Liesu Meng ◽  
Florian Forster ◽  
Diana Ekman ◽  
...  

AbstractThe introduction of the CTLA-4 recombinant fusion protein has demonstrated therapeutic effects by selectively modulating T-cell activation in rheumatoid arthritis. Here we show, using a forward genetic approach, that a mutation in the SH3gl1 gene encoding the endocytic protein Endophilin A2 is associated with the development of arthritis in rodents. Defective expression of SH3gl1 affects T cell effector functions and alters the activation threshold of autoreactive T cells, thereby leading to complete protection from chronic autoimmune inflammatory disease in both mice and rats. We further show that SH3GL1 regulates human T cell signaling and T cell receptor internalization, and its expression is upregulated in rheumatoid arthritis patients. Collectively our data identify SH3GL1 as a key regulator of T cell activation, and as a potential target for treatment of autoimmune diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
F. A. Monsalve ◽  
A. Rojas ◽  
I. Gonzalez ◽  
R. Perez ◽  
C. Añasco ◽  
...  

Receptor internalization and degradation (RID), is a transmembrane protein coded within the E3 region expression cassette of adenoviruses. RID downregulates the cell surface expression of epidermal growth factor receptor (EGFR), tumor necrosis factor receptor (TNFR), and apoptosis antigen 1 (FAS), causing a reduction of the effects of their respective ligands. In addition, RID inhibits apoptosis by decreasing the secretion of TNF-related apoptosis-inducing ligand (TRAIL) by normal tissue cells. In this article, we report that RID inhibited chemokine expression in human breast cancer cell line MDA-MB-231 but showed no effect in cell line MCF7. These dissimilar results may be due to the different molecular and functional properties of both cell lines. Therefore, it is necessary to replicate this study in other breast cancer cell models.


2011 ◽  
Vol 72 (2) ◽  
pp. 460-471 ◽  
Author(s):  
Anja Heinemann ◽  
Fang Zhao ◽  
Sonali Pechlivanis ◽  
Jürgen Eberle ◽  
Alexander Steinle ◽  
...  

2001 ◽  
Vol 75 (17) ◽  
pp. 7803-7810 ◽  
Author(s):  
Helmut M. Diepolder ◽  
Norbert H. Gruener ◽  
J. Tilman Gerlach ◽  
Maria-Christina Jung ◽  
Eddy A. Wierenga ◽  
...  

ABSTRACT CD4+ T cells play a major role in the host defense against viruses and intracellular microbes. During the natural course of such an infection, specific CD4+ T cells are exposed to a wide range of antigen concentrations depending on the body compartment and the stage of disease. While epitope variants trigger only subsets of T-cell effector functions, the response of virus-specific CD4+ T cells to various concentrations of the wild-type antigen has not been systematically studied. We stimulated hepatitis B virus core- and hepatitis C virus NS3-specific CD4+ T-cell clones which had been isolated from patients with acute hepatitis during viral clearance with a wide range of specific antigen concentrations and determined the phenotypic changes and the induction of T-cell effector functions in relation to T-cell receptor internalization. A low antigen concentration induced the expression of T-cell activation markers and adhesion molecules in CD4+ T-cell clones in the absence of cytokine secretion and proliferation. The expression of CD25, HLA-DR, CD69, and intercellular cell adhesion molecule 1 increased as soon as T-cell receptor internalization became detectable. A 30- to 100-fold-higher antigen concentration, corresponding to the internalization of 20 to 30% of T-cell receptor molecules, however, was required for the induction of proliferation as well as for gamma interferon and interleukin-4 secretion. These data indicate that virus-specific CD4+ T cells can respond to specific antigen in a graded manner depending on the antigen concentration, which may have implications for a coordinate regulation of specific CD4+ T-cell responses.


1996 ◽  
Vol 33 (10) ◽  
pp. 891-900 ◽  
Author(s):  
Ryuji Makida ◽  
Michael F. Hofer ◽  
Kozo Takase ◽  
John C. Cambier ◽  
Donald Y.M. Leung

2017 ◽  
Vol 14 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Ryosuke Kojima ◽  
Leo Scheller ◽  
Martin Fussenegger

Sign in / Sign up

Export Citation Format

Share Document