An Unbiased Method for the Quantitation of Disease Phenotypes Using a Custom-Built Macro Plugin for the Program ImageJ

Author(s):  
Ahmed Abd-El-Haliem
Keyword(s):  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guojun Wu ◽  
Naisi Zhao ◽  
Chenhong Zhang ◽  
Yan Y. Lam ◽  
Liping Zhao

AbstractTo demonstrate the causative role of gut microbiome in human health and diseases, we first need to identify, via next-generation sequencing, potentially important functional members associated with specific health outcomes and disease phenotypes. However, due to the strain-level genetic complexity of the gut microbiota, microbiome datasets are highly dimensional and highly sparse in nature, making it challenging to identify putative causative agents of a particular disease phenotype. Members of an ecosystem seldomly live independently from each other. Instead, they develop local interactions and form inter-member organizations to influence the ecosystem’s higher-level patterns and functions. In the ecological study of macro-organisms, members are defined as belonging to the same “guild” if they exploit the same class of resources in a similar way or work together as a coherent functional group. Translating the concept of “guild” to the study of gut microbiota, we redefine guild as a group of bacteria that show consistent co-abundant behavior and likely to work together to contribute to the same ecological function. In this opinion article, we discuss how to use guilds as the aggregation unit to reduce dimensionality and sparsity in microbiome-wide association studies for identifying candidate gut bacteria that may causatively contribute to human health and diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fiorella Ghisays ◽  
Aitor Garzia ◽  
Hexiao Wang ◽  
Claudia Canasto-Chibuque ◽  
Marcel Hohl ◽  
...  

AbstractTelomere repeat containing RNAs (TERRAs) are a family of long non-coding RNAs transcribed from the subtelomeric regions of eukaryotic chromosomes. TERRA transcripts can form R-loops at chromosome ends; however the importance of these structures or the regulation of TERRA expression and retention in telomeric R-loops remain unclear. Here, we show that the RTEL1 (Regulator of Telomere Length 1) helicase influences the abundance and localization of TERRA in human cells. Depletion of RTEL1 leads to increased levels of TERRA RNA while reducing TERRA-containing R loops at telomeres. In vitro, RTEL1 shows a strong preference for binding G-quadruplex structures which form in TERRA. This binding is mediated by the C-terminal region of RTEL1, and is independent of the RTEL1 helicase domain. RTEL1 binding to TERRA appears to be essential for cell viability, underscoring the importance of this function. Degradation of TERRA-containing R-loops by overexpression of RNAse H1 partially recapitulates the increased TERRA levels and telomeric instability associated with RTEL1 deficiency. Collectively, these data suggest that regulation of TERRA is a key function of the RTEL1 helicase, and that loss of that function may contribute to the disease phenotypes of patients with RTEL1 mutations.


Author(s):  
Elisabeth Mangiameli ◽  
Anna Cecchele ◽  
Francesco Morena ◽  
Francesca Sanvito ◽  
Vittoria Matafora ◽  
...  

2016 ◽  
Vol 12 (2) ◽  
pp. 666-673 ◽  
Author(s):  
Wonjun Ji ◽  
Myoung Nam Lim ◽  
So Hyeon Bak ◽  
Seok-Ho Hong ◽  
Seon-Sook Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document