scholarly journals A Brief Review of Other Notable Protein Detection Methods on Acrylamide Gels

Author(s):  
Biji T. Kurien ◽  
R. Hal Scofield
2007 ◽  
Vol 12 (5) ◽  
pp. 311-317 ◽  
Author(s):  
Vindhya Kunduru ◽  
Shalini Prasad

We demonstrate a technique to detect protein biomarkers contained in vulnerable coronary plaque using a platform-based microelectrode array (MEA). The detection scheme is based on the property of high specificity binding between antibody and antigen similar to most immunoassay techniques. Rapid clinical diagnosis can be achieved by detecting the amount of protein in blood by analyzing the protein's electrical signature. Polystyrene beads which act as transportation agents for the immobile proteins (antigen) are electrically aligned by application of homogenous electric fields. The principle of electrophoresis is used to produce calculated electrokinetic movement among the anti-C-reactive protein (CRP), or in other words antibody funtionalized polystyrene beads. The electrophoretic movement of antibody-functionalized polystyrene beads results in the formation of “Microbridges” between the two electrodes of interest which aid in the amplification of the antigen—antibody binding event. Sensitive electrical equipment is used for capturing the amplified signal from the “Microbridge” which essentially behaves as a conducting path between the two electrodes. The technique circumvents the disadvantages of conventional protein detection methods by being rapid, noninvasive, label-free, repeatable, and inexpensive. The same principle of detection can be applied for any receptor—ligand-based system because the technique is based only on the volume of the analyte of interest. Detection of the inflammatory coronary disease biomarker CRP is achieved at concentration levels spanning over the lower microgram/milliliter to higher order nanogram/milliliter ranges.


Biosensors ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 115
Author(s):  
Lasangi Dhanapala ◽  
Colleen E. Krause ◽  
Abby L. Jones ◽  
James F. Rusling

Medical diagnostics is trending towards a more personalized future approach in which multiple tests can be digitized into patient records. In cancer diagnostics, patients can be tested for individual protein and genomic biomarkers that detect cancers at very early stages and also be used to monitor cancer progression or remission during therapy. These data can then be incorporated into patient records that could be easily accessed on a cell phone by a health care professional or the patients themselves on demand. Data on protein biomarkers have a large potential to be measured in point-of-care devices, particularly diagnostic panels that could provide a continually updated, personalized record of a disease like cancer. Electrochemical immunoassays have been popular among protein detection methods due to their inherent high sensitivity and ease of coupling with screen-printed and inkjet-printed electrodes. Integrated chips featuring these kinds of electrodes can be built at low cost and designed for ease of automation. Enzyme-linked immunosorbent assay (ELISA) features are adopted in most of these ultrasensitive detection systems, with microfluidics allowing easy manipulation and good fluid dynamics to deliver reagents and detect the desired proteins. Several of these ultrasensitive systems have detected biomarker panels ranging from four to eight proteins, which in many cases when a specific cancer is suspected may be sufficient. However, a grand challenge lies in engineering microfluidic-printed electrode devices for the simultaneous detection of larger protein panels (e.g., 50–100) that could be used to test for many types of cancers, as well as other diseases for truly personalized care.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1426 ◽  
Author(s):  
Megha Bhardwaj ◽  
Anton Gies ◽  
Korbinian Weigl ◽  
Kaja Tikk ◽  
Axel Benner ◽  
...  

Objective: Plasma protein biomarkers could be an efficient alternative for population-based screening for early detection of colorectal cancer (CRC). The objective of this study was to evaluate and validate plasma proteins individually and as a signature for early detection of CRC. Methods: In a three-stage design, proteins were measured firstly by liquid chromatography/multiple reaction monitoring-mass spectrometry (LC/MRM-MS) and later by proximity extension assay (PEA) in a discovery set consisting of 96 newly diagnosed CRC cases and 94 controls free of neoplasms at screening colonoscopy. Two algorithms (one for each measurement method) were derived by Lasso regression and .632+ bootstrap based on 11 proteins that were included in both the LC/MRM-MS and PEA measurements. Additionally, another algorithm was constructed from the same eleven biomarkers plus amphireglin, the most promising protein marker in the PEA measurements that had not been available from the LC/MRM-MS measurements. Lastly the three prediction signatures were validated with PEA in independent samples of participants of screening colonoscopy (CRC (n = 56), advanced adenoma (n = 101), and participants free of neoplasm (n = 102)). Results: The same four proteins were included in all three prediction signatures; mannan binding lectin serine protease 1, osteopontin, serum paraoxonase lactonase 3 and transferrin receptor protein 1, and the third prediction signature additionally included amphiregulin. In the independent validation set from a true screening setting, the five-marker blood-based signature including AREG presented areas under the curves of 0.82 (95% CI, 0.74–0.89), 0.86 (95% CI, 0.77–0.92) and 0.76 (95% CI, 0.64–0.86) for all, early and late stages CRC, respectively. Conclusion: Two different measurement methods consistently identified four protein markers and an algorithm additionally including amphiregulin, a marker measured by PEA only, showed promising performance for detecting early stage CRC in an independent validation in a true screening setting. These proteins may be potential candidates for blood-based tests for early detection of CRC.


2005 ◽  
Vol 25 (1-2) ◽  
pp. 19-32 ◽  
Author(s):  
Reiner Westermeier ◽  
Rita Marouga

In proteomics research chemical as well as physical methods are used to detect proteins subsequently to their separation. Physical methods are mostly applied after chromatography. They are either based on spectroscopy like light absorption at certain wavelengths or mass determination of peptides and their fragments with mass spectrometry. Chemical methods are used after two-dimensional electrophoresis and employ staining with organic dyes, metal chelates, fluorescent dyes, complexing with silver, or pre-labeling with fluorophores. In some cases autoradiography is still used. Since all of these techniques are very different in terms of sensitivity, their usefulness for quantitative determinations varies significantly. This review will describe the various protein detection methods applied to electrophoresis gels.


2015 ◽  
Vol 61 (2) ◽  
pp. 239-253 ◽  
Author(s):  
T.O. Pleshakova ◽  
I.D. Shumov ◽  
Yu.D. Ivanov ◽  
K.A. Malsagova ◽  
A.L. Kaysheva ◽  
...  

Achievement of the concentration detection limit for proteins at the level of the reverse Avogadro number determines the modern development of proteomics. In this review, the possibility of approximating the reverse Avogadro number by using nanotechnological methods (AFM-based fishing with mechanical and electrical stimulation, nanowire detectors, and other methods) are discussed. The ability of AFM to detect, count, visualize and characterize physico-chemical properties of proteins at concentrations up to 10-17-10-18 M is demonstrated. The combination of AFM-fishing with mass-spectrometry allows the identification of proteins not only in pure solutions, but also in multi-component biological fluids (serum). The possibilities to improve the biospecific fishing efficiency by use of SOMAmers in both AFM and nanowire systems are discussed. The paper also provides criteria for evaluation of the sensitivity of fishing-based detection systems. The fishing efficiency depending on the detection system parameters is estimated. The practical implementation of protein fishing depending on the ratio of the sample solution volume and the surface of the detection system is discussed. The advantages and disadvantages of today's promising nanotechnological protein detection methods implemented on the basis of these schemes.


2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000168-000172
Author(s):  
Benjamin Brummel ◽  
Bradley Berron ◽  
Richard E. Eitel

The expense and difficulty of current biomarker detection methods is driving the design of microfluidic detection platforms. A ceramic microfluidic biosensor has been developed for conducting enzyme-linked immunosorbent assays (ELISA) using a novel polymerization amplified thermal detection (PATD) scheme. Prototype testing has yielded several results that support the viability of this device. It was seen that LTCC is an effective and durable substrate for the temperature sensor. Noise testing with our prototype revealed that our temperature sensors can detect changes as small as 0.01 K. Additional temperature testing showed that the thermistor behavior matches the expected thermistor beta equation. Finally, it was shown that polymerization reaction induction time is inversely proportional to glucose oxidase (GOx) initiator concentration. These preliminary results provide a foundation for future work developing the sensor into a protein detection device with cancer prognosis applications.


MRS Bulletin ◽  
2005 ◽  
Vol 30 (5) ◽  
pp. 376-380 ◽  
Author(s):  
C. Shad Thaxton ◽  
Nathaniel L. Rosi ◽  
Chad A. Mirkin

AbstractNanoscale materials are beginning to have an impact in the field of molecular diagnostics. In particular, gold nanoparticles surface-functionalized with DNA have garnered much recent interest. Due to the unusual optical and catalytic properties of gold nanoparticle labels, several distinct advantages for assay readout have been realized. This review focuses on the progress made in our group over the past seven years in the development of particle surface chemistry and ultrasensitive protein and nucleic acid assays based upon DNA-functionalized gold nanoparticles. For DNA targets, experiments demonstrate that assays based upon gold nanoparticle labels have enhanced target specificity and in certain cases the sensitivity of polymerase chain reaction (PCR), without the need for target amplification. For protein targets, similar experiments demonstrate that assays based upon gold nanoparticles are up to one million times more sensitive than conventional protein detection methods. Recent data using human samples demonstrate the utility of such assays.


Sign in / Sign up

Export Citation Format

Share Document