Flying Doctors for a Better Quality in Fruit Production

Author(s):  
Maria I. Pozo ◽  
Julien Vendeville ◽  
Veerle Mommaerts ◽  
Felix Wackers
Keyword(s):  
2018 ◽  
Vol 5 (2) ◽  
pp. 60-67 ◽  
Author(s):  
Dwi Yulianto ◽  
Retno Nugroho Whidhiasih ◽  
Maimunah Maimunah

ABSTRACT   Banana fruit is a commodity that contributes a great value to both national and international fruit production achievement. The government through the National Standardization Agency establishes standards to maintain the quality of bananas. The purpose of this Project is to classify the stages of maturity of Ambon banana base on the color index using Naïve Bayes method in accordance with the regulations of SNI 7422:2009. Naive Bayes is used as a method in the classification process by comparing the probability values generated from the variable value of each model to determine the stage of Ambon banana maturity. The data used is the primary data image of 105 pieces of Ambon banana. By using 3 models which consists of different variables obtained the same greatest average accuracy by using the 2nd model which has 9 variable values (r, g, b, v, * a, * b, entropy, energy, and homogeneity) and the 3rd model has 7 variable values (r, g, b, v , * a, entropy and homogeneity) that is 90.48%.   Keywords: banana maturity, classification, image processing     ABSTRAK   Buah pisang merupakan komoditas yang memberikan kontribusi besar terhadap angka produksi buah nasional maupun internasional. Pemerintah melalui Badan Standarisasi Nasional menetapkan standar untuk buah pisang, menjaga mutu  buah pisang. Tujuan dari penelitian ini adalah klasifikasi tahapan kematangan dari buah pisang ambon berdasarkan indeks warna menggunakan metode Naïve Bayes  sesuai dengan SNI 7422:2009. Naive bayes digunakan sebagai metode dalam proses pengklasifikasian dengan cara membandingkan nilai probabilitas yang dihasilkan dari nilai variabel penduga setiap model untuk menentukan tahap kematangan pisang ambon. Data yang digunakan adalah data primer citra pisang ambon sebanyak 105. Dengan menggunakan 3 buah model yang terdiri dari variabel penduga yang berbeda didapatkan akurasi rata-rata terbesar yang sama yaitu dengan menggunakan model ke-2 yang mempunyai 9 nilai variabel (r, g, b, v, *a, *b, entropi, energi, dan homogenitas) dan model ke-3 yang mempunyai 7 nilai variabel (r, g, b, v, *a, entropi dan homogenitas) yaitu sebesar 90.48%.   Kata Kunci : kematangan pisang,  klasifikasi, pengolahan citra


2020 ◽  
Vol 105 (3) ◽  
pp. 281-299
Author(s):  
Javier Carreño-Barrera ◽  
Luis Alberto Núñez-Avellaneda ◽  
Maria José Sanín ◽  
Artur Campos D. Maia

Solitary, dioecious, and mostly endemic to Andean cloud forests, wax palms (Ceroxylon Bonpl. ex DC. spp.) are currently under worrisome conservation status. The establishment of management plans for their dwindling populations rely on detailed biological data, including their reproductive ecology. As in the case of numerous other Neotropical palm taxa, small beetles are assumed to be selective pollinators of wax palms, but their identity and relevance in successful fruit yield were unknown. During three consecutive reproductive seasons we collected data on population phenology and reproductive and floral biology of three syntopic species of wax palms native to the Colombian Andes. We also determined the composition of the associated flower-visiting entomofauna, quantifying the extent of the role of individual species as effective pollinators through standardized value indexes that take into consideration abundance, constancy, and pollen transport efficiency. The studied populations of C. parvifrons (Engel) H. Wendl., C. ventricosum Burret, and C. vogelianum (Engel) H. Wendl. exhibit seasonal reproductive cycles with marked temporal patterns of flower and fruit production. The composition of the associated flower-visiting entomofauna, comprised by ca. 50 morphotypes, was constant across flowering seasons and differed only marginally among species. Nonetheless, a fraction of the insect species associated with pistillate inflorescences actually carried pollen, and calculated pollinator importance indexes demonstrated that one insect species alone, Mystrops rotundula Sharp, accounted for 94%–99% of the effective pollination services for all three species of wax palms. The sequential asynchronous flowering of C. parvifrons, C. ventricosum, and C. vogelianum provides an abundant and constant supply of pollen, pivotal for the maintenance of large populations of their shared pollinators, a cooperative strategy proven effective by high fruit yield rates (up to 79%). Reproductive success might be compromised for all species by the population decline of one of them, as it would tamper with the temporal orchestration of pollen offer.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498e-498
Author(s):  
S. Paramasivam ◽  
A.K. Alva

For perennial crop production conditions, major portion of nutrient removal from the soil-tree system is that in harvested fruits. Nitrogen in the fruits was calculated for 22-year-old `Hamlin' orange (Citrus sinensis) trees on Cleopatra mandarin (Citrus reticulata) rootstock, grown in a Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) that received various N rates (112, 168, 224, and 280 kg N/ha per year) as either i) broadcast of dry granular form (DGF; four applications/year), or ii) fertigation (FRT; 15 applications/year). Total N in the fruits (mean across 4 years) varied from 82 to 110 and 89 to 111 kg N/ha per year for the DGF and FRT sources, respectively. Proportion of N in the fruits in relation to N applied decreased from 74% to 39% for the DGF and from 80% to 40% for the FRT treatments. High percentage of N removal in the fruits in relation to total N applied at low N rates indicate that trees may be depleting the tree reserve for maintaining fruit production. This was evident, to some extent, by the low leaf N concentration at the low N treatments. Furthermore, canopy density was also lower in the low N trees compared to those that received higher N rates.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 543c-543
Author(s):  
Ami N. Erickson ◽  
Albert H. Markhart

Fruit yield reduction due to high temperatures has been widely observed in Solanaceous crops. Our past experiments have demonstrated that Capsicum annuum cultivars Ace and Bell Boy completely fail to produce fruit when grown at constant 33 °C. However, flowers are produced, continually. To determine which stages of flower development are sensitive to high temperatures, pepper buds, ranging in size from 1 mm to anthesis, were exposed to high temperatures for 6 hr, 48 hr, 5 days, or for the duration of the experiment. Fruit set for each bud size was determined. Exposure to high temperatures at anthesis and at the 2-mm size stage for 2 or more days significantly reduced fruit production. To determine whether inhibition of pollination, inhibition of fertilization, and/or injury to the female or male structures prevents fruit production at high temperatures, flowers from pepper cultivars Ace and Bell Boy were grown until flowers on the 8th or 9th node were 11 mm in length. Plants were divided between 25 °C and 33 °C constant growth chambers for 2 to 4 days until anthesis. At anthesis, flowers from both treatments were cross-pollinated in all combination, and crosses were equally divided between 33 or 25 °C growth chambers until fruit set or flowers abscised. All flower crosses resulted in 80% to 100% fruit set when post-pollination temperatures were 25 °C. However, post-pollination temperatures of 33 °C significantly reduced fruit production. Reduced fruit set by flowers exposed to high temperatures during anthesis and pollination is not a result of inviable pollen or ovule, but an inhibition of fertilization or initial fruit development.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 548a-548 ◽  
Author(s):  
D.M. Glenn ◽  
G. Puterka ◽  
T. Baugher ◽  
T. Unruh ◽  
S. Drake

Hydrophobic particle film technology (HPF) is a developing pest control system for tree fruit production systems. Studies were established in Chile, and Washington, Pennsylvania, and West Virginia in the United States, to evaluate the effect of HPF technology on tree fruit yield and quality. Studies in Chile, Washington, and West Virginia demonstrated increased photosynthetic rate at the leaf level. Yield was increased in peaches (Chile) and apples (West Virginia), and fruit size was increased in apples (Washington and Pennsylvania). Increased red color in apple was demonstrated at all sites with reduced russetting and `Stayman' cracking in Pennsylvania. HPF technology appears to be an effective tool in reducing water and heat stress in tree fruit resulting in increased fruit quality.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 459d-459
Author(s):  
Fumiomi Takeda ◽  
Paul R. Adler ◽  
D. Michael Glenn

Strawberry plants (cvs. Camarosa, Chandler, Sweet Charlie, Primetime, Jewel, and Tribute) were grown in soilless culture systems in a greenhouse from October to May. Fresh-dug and runner-tip Aplug® plants were transplanted into two systems: vertically stacked pots (24 plants/m2) containing perlite and horizontal nutrient film technique troughs (13 plants/m2). Plants were fertigated continuously with recirculating nutrient solution. In a 7-month production cycle, the plug plants bloomed earlier and produced more fruit during the first month of harvest (December) than the fresh-dug plants. Higher yields from plug plants were a result of more fruit numbers and not larger fruit size. Fruit production averaged 6.0 and 3.5 kg/m2 in the trough and pot systems, respectively. The vertical growing system allows greater plant densities, but light intensity reaching the plants in the lower sections of the tower can be less than 20% of levels measured at the top. Establishment costs of protected culture systems are higher, but production is earlier and labor costs are typically reduced. Greenhouse hydroponic culture systems could extend the winter strawberry production to more northern locations.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 321 ◽  
Author(s):  
Julie Oustric ◽  
Radia Lourkisti ◽  
Stéphane Herbette ◽  
Raphaël Morillon ◽  
Gilles Paolacci ◽  
...  

Current climatic upheavals reduce water availability which impacts the growth and fruit quality of plants. In citrus crops, scion/rootstock combinations are used to ensure high fruit production and quality and a stress tolerance/resistance. Our objective was to assess the effect on the clementine scion (C) under natural mild water deficit of (i) polyploid rootstocks by comparing the allotetraploid FlhorAG1 (C/4xFLs; trifoliate orange + Willowleaf mandarin) with its diploid parents, trifoliate orange (C/2xTOs), and Willowleaf mandarin (C/2xWLs), and with a diploid genotype used as reference (Carrizo citrange, C/2xCCs), (ii) rootstock propagation methods by comparing trifoliate orange seedling (C/2xTOs) with cutting (C/2xTOc). A mild water deficit observed under orchard conditions during the summer period (July–August) induced a significant change in yield (except in C/2xTOs), fruit size, and quality. C/2xCCs, C/2xTOs, and C/2xWLs appeared less affected by water deficit as indicated by their lower reduction of predawn leaf water potential (Ψpd), relative water content (RWC), transpiration (E), and photosynthetic parameters (Pnet and gs). Their greater redox balance was probably due to their better antioxidant efficiency. Seedling rootstocks lead to a better adaptation of clementine scions to water deficit than cutting or allotetraploid rootstock. Improving the tolerance to water deficit requires taking into consideration the rootstock genotype, propagation method, and ploidy level.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1551
Author(s):  
Tamoor Khan ◽  
Jiangtao Qiu ◽  
Hafiz Husnain Raza Sherazi ◽  
Mubashir Ali ◽  
Sukumar Letchmunan ◽  
...  

Agricultural advancements have significantly impacted people’s lives and their surroundings in recent years. The insufficient knowledge of the whole agricultural production system and conventional ways of irrigation have limited agricultural yields in the past. The remote sensing innovations recently implemented in agriculture have dramatically revolutionized production efficiency by offering unparalleled opportunities for convenient, versatile, and quick collection of land images to collect critical details on the crop’s conditions. These innovations have enabled automated data collection, simulation, and interpretation based on crop analytics facilitated by deep learning techniques. This paper aims to reveal the transformative patterns of old Chinese agrarian development and fruit production by focusing on the major crop production (from 1980 to 2050) taking into account various forms of data from fruit production (e.g., apples, bananas, citrus fruits, pears, and grapes). In this study, we used production data for different fruits grown in China to predict the future production of these fruits. The study employs deep neural networks to project future fruit production based on the statistics issued by China’s National Bureau of Statistics on the total fruit growth output for this period. The proposed method exhibits encouraging results with an accuracy of 95.56% calculating by accuracy formula based on fruit production variation. Authors further provide recommendations on the AGR-DL (agricultural deep learning) method being helpful for developing countries. The results suggest that the agricultural development in China is acceptable but demands more improvement and government needs to prioritize expanding the fruit production by establishing new strategies for cultivators to boost their performance.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 408
Author(s):  
Gizachew Zeleke ◽  
Tatek Dejene ◽  
Wubalem Tadesse ◽  
Pablo Martín-Pinto

In this study, we evaluated stand status, dendrometric variables, and fruit production of Tamarind (Tamarindus indica L.) trees growing in bushland and farmland-use types in dryland areas of Ethiopia. The vegetation survey was conducted using the point-centered quarter method. The fruit yield of 54 trees was also evaluated. Tree density and fruit production in ha were estimated. There was a significant difference in Tamarind tree density between the two land-use types (p = 0.01). The mean fruit yield of farmland trees was significantly higher than that of bushland trees. However, Tamarind has unsustainable structure on farmlands. Differences in the dendrometric characteristics of trees were also observed between the two land-use types. Predictive models were selected for Tamarind fruit yield estimations in both land-use types. Although the majority of farmland trees produced <5000 fruit year−1, the selection of Tamarind germplasm in its natural ranges could improve production. Thus, the development of management plans to establish stands that have a more balanced diameter structure and thereby ensure continuity of the population and fruit yields is required in this area, particularly in the farmlands. This baseline information could assist elsewhere in areas that are facing similar challenges for the species due to land-use change.


Sign in / Sign up

Export Citation Format

Share Document