scholarly journals Using the Living CV to Help Students Take Ownership of Their Learning Gain

Author(s):  
Lisa Dibben ◽  
Dawn A. Morley
Keyword(s):  
Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1818
Author(s):  
Jennifer Routh ◽  
Sharmini Julita Paramasivam ◽  
Peter Cockcroft ◽  
Vishna Devi Nadarajah ◽  
Kamalan Jeevaratnam

The public health implications of the Covid-19 pandemic have caused unprecedented and unexpected challenges for veterinary schools worldwide. They are grappling with a wide range of issues to ensure that students can be trained and assessed appropriately, despite the international, national, and local restrictions placed on them. Moving the delivery of knowledge content largely online will have had a positive and/or negative impact on veterinary student learning gain which is yet to be clarified. Workplace learning is particularly problematic in the current climate, which is concerning for graduates who need to develop, and then demonstrate, practical core competences. Means to optimise the learning outcomes in a hybrid model of curriculum delivery are suggested. Specific approaches could include the use of video, group discussion, simulation and role play, peer to peer and interprofessional education.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1590
Author(s):  
Arnak Poghosyan ◽  
Ashot Harutyunyan ◽  
Naira Grigoryan ◽  
Clement Pang ◽  
George Oganesyan ◽  
...  

The main purpose of an application performance monitoring/management (APM) software is to ensure the highest availability, efficiency and security of applications. An APM software accomplishes the main goals through automation, measurements, analysis and diagnostics. Gartner specifies the three crucial capabilities of APM softwares. The first is an end-user experience monitoring for revealing the interactions of users with application and infrastructure components. The second is application discovery, diagnostics and tracing. The third key component is machine learning (ML) and artificial intelligence (AI) powered data analytics for predictions, anomaly detection, event correlations and root cause analysis. Time series metrics, logs and traces are the three pillars of observability and the valuable source of information for IT operations. Accurate, scalable and robust time series forecasting and anomaly detection are the requested capabilities of the analytics. Approaches based on neural networks (NN) and deep learning gain an increasing popularity due to their flexibility and ability to tackle complex nonlinear problems. However, some of the disadvantages of NN-based models for distributed cloud applications mitigate expectations and require specific approaches. We demonstrate how NN-models, pretrained on a global time series database, can be applied to customer specific data using transfer learning. In general, NN-models adequately operate only on stationary time series. Application to nonstationary time series requires multilayer data processing including hypothesis testing for data categorization, category specific transformations into stationary data, forecasting and backward transformations. We present the mathematical background of this approach and discuss experimental results based on implementation for Wavefront by VMware (an APM software) while monitoring real customer cloud environments.


2018 ◽  
Vol 40 (1) ◽  
pp. 137-166 ◽  
Author(s):  
EVELIEN MULDER ◽  
MARCO VAN DE VEN ◽  
ELIANE SEGERS ◽  
LUDO VERHOEVEN

ABSTRACTWe examined to what extent the variation in vocabulary learning outcomes (vocabulary knowledge, learning gain, and rate of forgetting) in English as a second language (L2) in context can be predicted from semantic contextual support, word characteristics (cognate status, Levenshtein distance, word frequency, and word length), and student characteristics (prior vocabulary knowledge, reading ability, and exposure to English) in 197 Dutch adolescents. Students were taught cognates, false friends, and control words through judging sentences with varying degrees of semantic contextual support using a pretest/posttest between subjects design. Participants were presented with an English target word and its Dutch translation, followed by an English sentence. They were instructed to judge the plausibility of the sentence. Mixed-efffects models indicated that learning gains were higher for sentences with more semantic contextual support and in students with stronger reading comprehension skills. We were the first to show that Levenshtein distance is an important predictor for L2 vocabulary learning outcomes. Furthermore, more accurate as well as faster learning task performance lead to higher learning outcomes. It can thus be concluded that L2 study materials containing semantically supportive contexts and that focus on words with little L1-L2 overlap are most effective for L2 vocabulary learning.


Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 152
Author(s):  
Dongqi Ma ◽  
Hui Lin

To suppress the speed ripple of a permanent magnet synchronous motor in a seeker servo system, we propose an accelerated iterative learning control with an adjustable learning interval. First, according to the error of current iterative learning for the system, we determine the next iterative learning interval and conduct real-time correction on the learning gain. For the learning interval, as the number of iterations increases, the actual interval that needs correction constantly shortens, accelerating the convergence speed. Second, we analyze the specific structure of the controller while applying reasonable assumptions pertaining to its condition. Using the λ-norm, we analyze and apply our mathematical knowledge to obtain a strict mathematical proof on the P-type iterative learning control and obtain the condition of convergence for the controller. Finally, we apply the proposed method for periodic ripple inhibition of the torque rotation speed of the permanent magnet synchronous motor and establish the system model; we use the periodic load torque to simulate the ripple torque of the synchronous motor. The simulation and experimental results indicate the effectiveness of the method.


2020 ◽  
Vol 34 (09) ◽  
pp. 13420-13427
Author(s):  
Ange Tato ◽  
Roger Nkambou ◽  
Aude Dufresne

We present a serious game designed to help players/learners develop socio-moral reasoning (SMR) maturity. It is based on an existing computerized task that was converted into a game to improve the motivation of learners. The learner model is computed using a hybrid deep learning architecture, and adaptation rules are provided by both human experts and machine learning techniques. We conducted some experiments with two versions of the game (the initial version and the adaptive version with AI-Based learner modeling). The results show that the adaptive version provides significant better results in terms of learning gain.


2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Azwar Iskandar ◽  
Achmat Subekan

The objectives of this research are to: (i) evaluate the trainees’s satisfaction on trainers and training performance; (ii) evaluate learning gain or improvement of trainees’s skills, knowledge, and attitude after training; and (iii) know the significant obstacles that can reduce the effectiveness of training. Using the Kirkpatrick Evaluation Model through questionnaire, interview, and descriptive statistics method, this research reveals that: (i) the overall aspect of the implementation evaluation was assessed by participants in the good category although it could not meet the level of expectations of participants that could be seen from the ratio of the average total perception to reality below 100%. On the other hand, the trainers aspect has been able to meet the expectations of participants where the overall level of trainers performance has been assessed by participants and entered into the category of very good; (ii) the results of the evaluation analysis at Level 2 (learning gain) show that most participants graduate with good predicate and get an up/up score so that it can be said that participants have gained additional knowledge after attending the training; (iii) although in general the evaluation results showed good results, there are still some obstacles faced by participants in attending the training. In terms of organizing, participants generally complained about inadequate internet quality in some areas. Meanwhile, in the trainers aspect, participants generally give feedback that teachers can multiply case studies and raise the latest issues in the confectionery of problems related to training materials.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3223
Author(s):  
Husam A. Foudeh ◽  
Patrick Luk ◽  
James Whidborne

Wind disturbances and noise severely affect Unmanned Aerial Vehicles (UAV) when monitoring and finding faults in overhead power lines. Accordingly, we propose repetitive learning as a new solution for the problem. In particular, the performance of Iterative Learning Control (ILC) that are based on optimal approaches are examined, namely (i) Gradient-based ILC and (ii) Norm Optimal ILC. When considering the repetitive nature of fault-finding tasks for electrical overhead power lines, this study develops, implements and evaluates optimal ILC algorithms for a UAV model. Moreover, we suggest attempting a learning gain variation on the standard optimal algorithms instead of heuristically selecting from the previous range. The results of both simulations and experiments of gradient-based norm optimal control reveal that the proposed ILC algorithm has not only contributed to good trajectory tracking, but also good convergence speed and the ability to cope with exogenous disturbances such as wind gusts.


Sign in / Sign up

Export Citation Format

Share Document