Disparity Image Analysis for 3D Characterization of Surface Anomalies

Author(s):  
R. Marani ◽  
A. Petitti ◽  
M. Attolico ◽  
G. Cicirelli ◽  
A. Milella ◽  
...  
Keyword(s):  
1999 ◽  
Vol 26 (1-2) ◽  
pp. 153-160 ◽  
Author(s):  
M.-N. Pons ◽  
E. M. Weisser ◽  
H. Vivier ◽  
D. V. Boger

Vacuum ◽  
2007 ◽  
Vol 82 (2) ◽  
pp. 282-285 ◽  
Author(s):  
Dušan Novotný ◽  
Rudolf Hrach ◽  
Michal Kostern

PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0171417 ◽  
Author(s):  
María Anguiano ◽  
Carlos Castilla ◽  
Martin Maška ◽  
Cristina Ederra ◽  
Rafael Peláez ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Maryam Haghighi ◽  
Karamatollah Rezaei

Pectin-based gelled systems have gained increasing attention for the design of newly developed food products. For this reason, the characterization of such formulas is a necessity in order to present scientific data and to introduce an appropriate finished product to the industry. Various analytical techniques are available for the evaluation of the systems formulated on the basis of pectin and the designed gel. In this paper, general analytical approaches for the characterization of pectin-based gelled systems were categorized into several subsections including physicochemical analysis, visual observation, textural/rheological measurement, microstructural image characterization, and psychorheological evaluation. Three-dimensional trials to assess correlations among microstructure, texture, and taste were also discussed. Practical examples of advanced objective techniques including experimental setups for small and large deformation rheological measurements and microstructural image analysis were presented in more details.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 119
Author(s):  
Federica Vurchio ◽  
Giorgia Fiori ◽  
Andrea Scorza ◽  
Salvatore Andrea Sciuto

<p class="Abstract"><span lang="EN-US">The functional characterization of MEMS devices is relevant today since it aims at verifying the behavior of these devices, as well as improving their design. In this regard, this study focused on the functional characterization of a MEMS microgripper prototype suitable in biomedical applications: the measurement of the angular displacement of the microgripper comb-drive is carried out by means of two novel automatic procedures, based on an image analysis method, SURF-based (Angular Displacement Measurement based on Speeded Up Robust Features, ADM<sub>SURF</sub>) and FFT-based (Angular Displacement Measurement based on Fast Fourier Transform, ADM<sub>FFT</sub>) method, respectively. Moreover, the measurement results are compared with a Semi-Automatic Method (SAM), to evaluate which of them is the most suitable for the functional characterization of the device. The curve fitting of the outcomes from SAM and ADM<sub>SURF</sub>, showed a quadratic trend in agreement with the analytical model. Moreover, the ADM<sub>SURF</sub> measurements below 1° are affected by an uncertainty of about 0.08° for voltages less than 14 V, confirming its suitability for microgripper characterization. It was also evaluated that the ADM<sub>FFT</sub> is more suitable for measurement of rotations greater than 1° (up to 30°), with a measurement uncertainty of 0.02°, at 95% of confidence level.</span></p>


Sign in / Sign up

Export Citation Format

Share Document