scholarly journals General Analytical Schemes for the Characterization of Pectin-Based Edible Gelled Systems

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Maryam Haghighi ◽  
Karamatollah Rezaei

Pectin-based gelled systems have gained increasing attention for the design of newly developed food products. For this reason, the characterization of such formulas is a necessity in order to present scientific data and to introduce an appropriate finished product to the industry. Various analytical techniques are available for the evaluation of the systems formulated on the basis of pectin and the designed gel. In this paper, general analytical approaches for the characterization of pectin-based gelled systems were categorized into several subsections including physicochemical analysis, visual observation, textural/rheological measurement, microstructural image characterization, and psychorheological evaluation. Three-dimensional trials to assess correlations among microstructure, texture, and taste were also discussed. Practical examples of advanced objective techniques including experimental setups for small and large deformation rheological measurements and microstructural image analysis were presented in more details.

PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0171417 ◽  
Author(s):  
María Anguiano ◽  
Carlos Castilla ◽  
Martin Maška ◽  
Cristina Ederra ◽  
Rafael Peláez ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Lindsey McKeen Polizzotti ◽  
Basak Oztan ◽  
Chris S. Bjornsson ◽  
Katherine R. Shubert ◽  
Bülent Yener ◽  
...  

Prognosis of breast cancer is primarily predicted by the histological grading of the tumor, where pathologists manually evaluate microscopic characteristics of the tissue. This labor intensive process suffers from intra- and inter-observer variations; thus, computer-aided systems that accomplish this assessment automatically are in high demand. We address this by developing an image analysis framework for the automated grading of breast cancer inin vitrothree-dimensional breast epithelial acini through the characterization of acinar structure morphology. A set of statistically significant features for the characterization of acini morphology are exploited for the automated grading of six (MCF10 series) cell line cultures mimicking three grades of breast cancer along the metastatic cascade. In addition to capturing both expected and visually differentiable changes, we quantify subtle differences that pose a challenge to assess through microscopic inspection. Our method achieves 89.0% accuracy in grading the acinar structures as nonmalignant, noninvasive carcinoma, and invasive carcinoma grades. We further demonstrate that the proposed methodology can be successfully applied for the grading ofin vivotissue samples albeit with additional constraints. These results indicate that the proposed features can be used to describe the relationship between the acini morphology and cellular function along the metastatic cascade.


2004 ◽  
Vol 38 ◽  
pp. 39-44 ◽  
Author(s):  
Frédéric Flin ◽  
Jean-Bruno Brzoska ◽  
Bernard Lesaffre ◽  
Cécile Coléou ◽  
Romeu André Pieritz

AbstractSnow, from its fall until its full melting, undergoes a structural metamorphism that is governed by temperature and humidity fields. Among the many possible mechanisms that contribute to snow metamorphism, those that depend only on curvature are the most accessible to modelling. In this paper, techniques of volume data analysis adapted to the complex geometry of snow are introduced and then applied to experimental tomographic data coming from the isothermal metamorphism of snow near 0°C. In particular, an adaptive algorithm of curvature computation is described. Present results on the evolution of specific surface area and anisotropy already show that such image-analysis methods are relevant tools for the characterization of real snow microstructures. Moreover, the evolution of the curvature distribution with time provides valuable information for the development of sintering models, in the same way as a possible quantitative calibration of snow-grain coarsening laws.


2012 ◽  
Vol 84 (2) ◽  
pp. 169-179 ◽  
Author(s):  
Rola Bou Khouzam ◽  
Joanna Szpunar ◽  
Michel Holeman ◽  
Ryszard Lobinski

Some elements in food are notoriously toxic, whereas others are considered essential for human health. Information on the exact chemical form in which an element is present in food is of paramount importance to determine the safety and nutritional quality of food. This critical review discusses the state of the art of analytical approaches to speciation of trace elements in food products. The topics addressed include (i) responding to regulations concerning some toxic elements (As, Hg, Sn); (ii) quality control of food and feed supplements; and (iii) characterization, in terms of element speciation, of nutritional plants (natural and genetically modified) and food supplements produced by biotechnology. The maturity of analytical techniques allowing the determination of individual well-defined metal species is highlighted. On the other hand, the recent developments of multidimensional hyphenated techniques and the democratization of electrospray high-resolution mass spectrometry (Orbitrap) start permitting fine characterization of element speciation in natural products.


2012 ◽  
Vol 18 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Jui-Ching Lin ◽  
William Heeschen ◽  
John Reffner ◽  
John Hook

AbstractThe combination of integrated focused ion beam–scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.


2018 ◽  
Vol 25 (33) ◽  
pp. 3956-3972
Author(s):  
Marko Krstić ◽  
Slavica Ražić

A large variety of analytical techniques are available to meet the needs of characterization of solid samples. But, when solid drug delivery systems are concerned we are faced with demanding methodologies which have to compile capabilities of analytical techniques in regard to large diversity of structures and surface functionality of analyzed adsorbent carriers. In this review, the most commonly used analytical techniques are presented with their basic principles, advantages and disadvantages in applications of interest. Adsorbent carriers are widely used today as ingredients in the formulation of pharmaceutical forms, for increasing the dissolution rate of the drug and hence the bioavailability. They are also used in the formulation of substances with modified or target drug release into a specific tissue. Methods of thermal analysis (Thermogravimetry - TGA, Differential Scanning Calorimetry - DSC and Thermal microscopy - TM), spectroscopic methods (Infrared Spectroscopy - IR, especially Fourier Transform Infrared Spectroscopy - FTIR and Raman spectroscopy), crystallographic methods (Powder X-Ray Diffraction - PXRD) and finally Scanning Electron Microscopy (SEM) are the most powerful in the characterization of modern therapeutic systems with porous adsorbents. The problem-solving power of each particular analytical method is often enhanced by using simultaneous methods rather than a single technique.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document