A Framework to Understand Interspecific Multimodal Signaling Systems

Author(s):  
Alexis C. Billings ◽  
Daniel T. Blumstein
Author(s):  
Dandan Wang ◽  
Brian W. Howell ◽  
Eric C. Olson

AbstractFetal alcohol syndrome (FAS) is characterized by disrupted fetal brain development and postnatal cognitive impairment. The targets of alcohol are diverse, and it is not clear whether there are common underlying molecular mechanisms producing these disruptions. Prior work established that acute ethanol exposure causes a transient increase in tyrosine phosphorylation of multiple proteins in cultured embryonic cortical cells. In this study, we show that a similar tyrosine phosphorylation transient occurs in the fetal brain after maternal dosing with ethanol. Using phospho-specific antibodies and immunohistochemistry, we mapped regions of highest tyrosine phosphorylation in the fetal cerebral cortex and found that areas of dendritic and axonal growth showed elevated tyrosine phosphorylation 10 min after maternal ethanol exposure. These were also areas of Src expression and Src family kinase (SFK) activation loop phosphorylation (pY416) expression. Importantly, maternal pretreatment with the SFK inhibitor dasatinib completely prevents both the pY416 increase and the tyrosine phosphorylation response. The phosphorylation response was observed in the perisomatic region and neurites of immature migrating and differentiating primary neurons. Importantly, the initial phosphotyrosine transient (~ 30 min) targets both Src and Dab1, two critical elements in Reelin signaling, a pathway required for normal cortical development. This initial phosphorylation response is followed by sustained reduction in Ser3 phosphorylation of n-cofilin, a critical actin severing protein and an identified downstream effector of Reelin signaling. This biochemical disruption is associated with sustained reduction of F-actin content and disrupted Golgi apparatus morphology in developing cortical neurons. The finding outlines a model in which the initial activation of SFKs by ethanol has the potential to disrupt multiple developmentally important signaling systems for several hours after maternal exposure.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 371
Author(s):  
Emily Medina ◽  
Su-Hwa Kim ◽  
Miriam Yun ◽  
Won-Gyu Choi

In natural ecosystems, plants are constantly exposed to changes in their surroundings as they grow, caused by a lifestyle that requires them to live where their seeds fall. Thus, plants strive to adapt and respond to changes in their exposed environment that change every moment. Heat stress that naturally occurs when plants grow in the summer or a tropical area adversely affects plants’ growth and poses a risk to plant development. When plants are subjected to heat stress, they recognize heat stress and respond using highly complex intracellular signaling systems such as reactive oxygen species (ROS). ROS was previously considered a byproduct that impairs plant growth. However, in recent studies, ROS gained attention for its function as a signaling molecule when plants respond to environmental stresses such as heat stress. In particular, ROS, produced in response to heat stress in various plant cell compartments such as mitochondria and chloroplasts, plays a crucial role as a signaling molecule that promotes plant growth and triggers subsequent downstream reactions. Therefore, this review aims to address the latest research trends and understandings, focusing on the function and role of ROS in responding and adapting plants to heat stress.


2021 ◽  
Vol 22 (10) ◽  
pp. 5109
Author(s):  
Egor A. Turovsky ◽  
Maria V. Turovskaya ◽  
Vladimir V. Dynnik

Various types of cells demonstrate ubiquitous rhythmicity registered as simple and complex Ca2+-oscillations, spikes, waves, and triggering phenomena mediated by G-protein and tyrosine kinase coupled receptors. Phospholipase C/IP3-receptors (PLC/IP3R) and endothelial NO-synthase/Ryanodine receptors (NOS/RyR)–dependent Ca2+ signaling systems, organized as multivariate positive feedback generators (PLC-G and NOS-G), underlie this rhythmicity. Loss of rhythmicity at obesity may indicate deregulation of these signaling systems. To issue the impact of cell size, receptors’ interplay, and obesity on the regulation of PLC-G and NOS-G, we applied fluorescent microscopy, immunochemical staining, and inhibitory analysis using cultured adipocytes of epididumal white adipose tissue of mice. Acetylcholine, norepinephrine, atrial natriuretic peptide, bradykinin, cholecystokinin, angiotensin II, and insulin evoked complex [Ca2+]i responses in adipocytes, implicating NOS-G or PLC-G. At low sub-threshold concentrations, acetylcholine and norepinephrine or acetylcholine and peptide hormones (in paired combinations) recruited NOS-G, based on G proteins subunits interplay and signaling amplification. Rhythmicity was cell size- dependent and disappeared in hypertrophied cells filled with lipids. Contrary to control cells, adipocytes of obese hyperglycemic and hypertensive mice, growing on glucose, did not accumulate lipids and demonstrated hormonal resistance being non responsive to any hormone applied. Preincubation of preadipocytes with palmitoyl-L-carnitine (100 nM) provided accumulation of lipids, increased expression and clustering of IP3R and RyR proteins, and partially restored hormonal sensitivity and rhythmicity (5–15% vs. 30–80% in control cells), while adipocytes of diabetic mice were not responsive at all. Here, we presented a detailed kinetic model of NOS-G and discussed its control. Collectively, we may suggest that universal mechanisms underlie loss of rhythmicity, Ca2+-signaling systems deregulation, and development of general hormonal resistance to obesity.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Juliana Reves Szemere ◽  
Horacio G. Rotstein ◽  
Alejandra C. Ventura

AbstractCovalent modification cycles (CMCs) are basic units of signaling systems and their properties are well understood. However, their behavior has been mostly characterized in situations where the substrate is in excess over the modifying enzymes. Experimental data on protein abundance suggest that the enzymes and their target proteins are present in comparable concentrations, leading to substrate sequestration by the enzymes. In this enzyme-in-excess regime, CMCs have been shown to exhibit signal termination, the ability of the product to return to a stationary value lower than its peak in response to constant stimulation, while this stimulation is still active, with possible implications for the ability of systems to adapt to environmental inputs. We characterize the conditions leading to signal termination in CMCs in the enzyme-in-excess regime. We also demonstrate that this behavior leads to a preferred frequency response (band-pass filters) when the cycle is subjected to periodic stimulation, whereas the literature reports that CMCs investigated so far behave as low-pass filters. We characterize the relationship between signal termination and the preferred frequency response to periodic inputs and we explore the dynamic mechanism underlying these phenomena. Finally, we describe how the behavior of CMCs is reflected in similar types of responses in the cascades of which they are part. Evidence of protein abundance in vivo shows that enzymes and substrates are present in comparable concentrations, thus suggesting that signal termination and frequency-preference response to periodic inputs are also important dynamic features of cell signaling systems, which have been overlooked.


2020 ◽  
Vol 38 (5/6) ◽  
pp. 997-1011
Author(s):  
Ning Li ◽  
Parthasarathy R. ◽  
Harshila H. Padwal

Purpose Smart mobility is a major guideline in the development of Smart Cities’ transport systems and management. The issue of transition into green, secure and sustainable transport modes, such as using bicycles, should be implemented in this case, along with the subjectivism of management. Design/methodology/approach The proposed technology reflects the Smart Bicycle vehicle model, which tracks cyclists and weather conditions and turns to electric motors in critical circumstances. Findings This reduces the physical load and battery consumption of cyclists which affects the Smart Cities’ ecology positively. Originality/value In Smart Vehicle Bicycle Communication Transport, the vehicle movement optimization technique is used for traffic scenarios to analyze traffic signaling systems that give better results in variable and dense traffic conditions.


Author(s):  
Cameron Fraser

The development of railroad signaling systems evolved with the need to provide interlocking between points and signals, and block working to keep trains a safe distance apart. Accordingly, the archetypal behavior of train control is summed up as providing (1) safe and efficient train movement by (2) the management of train routing and separation. This has been rudimentary since the advent of railway signaling and propagated in even the most contemporary of technologies today.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Saijaliisa Kangasjärvi ◽  
Jaakko Kangasjärvi

Reactive Oxygen Species (ROS) are ubiquitous metabolites in all aerobic organisms. Traditionally ROS have been considered as harmful, accidental byproducts of cellular functions involving electron transport chains or electron transfer. However, it is now recognized that controlled production of ROS has significant signaling functions, for example, in pathogen defense, in the regulation of stomatal closure, or in cell-to-cell signaling. ROS formation in subcellular compartments is critical to act as “alarm” signal in the response to stress, and the concept of ROS as primarily signaling substances has emerged. The involvement of ROS in several developmental and inducible processes implies that there must be coordinated function of signaling network(s) that govern ROS responses and subsequent processes. The air pollutant ozone can be used as a useful tool to elucidate the function of apoplastic ROS: O3 degrades in cell wall into various ROS which are interpreted as ROS with signaling function inducing downstream responses. We have used ozone as a tool in mutant screens and transcript profiling-reverse genetics to identify genes involved in processes related to the signaling function of ROS. We review here our recent findings in the elucidation of apoplastic ROS sensing, signaling, and interaction with various symplastic components.


2021 ◽  
Author(s):  
Moataz Dowaidar

CAR T cell research has fast progressed into the clinic and now back to the bench, with trial outcomes exposing new mechanisms of efficacy, toxicity, and resistance, and sparking the hunt for additional targets, clarification of signaling systems, and application of newer technology. CAR design, transduction methods, and cell type selection are all predicted to improve responses and change therapy for patients with a variety of malignancies.


Author(s):  
Johannes Lutz ◽  
Kristofer Hell ◽  
Ralf Westphal ◽  
Mathias Mühlhause
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document