A Domain Adaptation Technique for Deep Learning in Cybersecurity

Author(s):  
Aryya Gangopadhyay ◽  
Iyanuoluwa Odebode ◽  
Yelena Yesha
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


Author(s):  
Ansh Kapil ◽  
Armin Meier ◽  
Keith Steele ◽  
Marlon Rebelatto ◽  
Katharina Nekolla ◽  
...  

Author(s):  
Natalie Gentner ◽  
Andreas Kyek ◽  
Yao Yang ◽  
Mattia Carletti ◽  
Gian Antonio Susto

Author(s):  
Bertrand Lebichot ◽  
Yann-Aël Le Borgne ◽  
Liyun He-Guelton ◽  
Frédéric Oblé ◽  
Gianluca Bontempi

2021 ◽  
Vol 11 (17) ◽  
pp. 7984
Author(s):  
Prabu Subramani ◽  
Khalid Nazim Abdul Sattar ◽  
Rocío Pérez de Prado ◽  
Balasubramanian Girirajan ◽  
Marcin Wozniak

Connected autonomous vehicles (CAVs) currently promise cooperation between vehicles, providing abundant and real-time information through wireless communication technologies. In this paper, a two-level fusion of classifiers (TLFC) approach is proposed by using deep learning classifiers to perform accurate road detection (RD). The proposed TLFC-RD approach improves the classification by considering four key strategies such as cross fold operation at input and pre-processing using superpixel generation, adequate features, multi-classifier feature fusion and a deep learning classifier. Specifically, the road is classified as drivable and non-drivable areas by designing the TLFC using the deep learning classifiers, and the detected information using the TLFC-RD is exchanged between the autonomous vehicles for the ease of driving on the road. The TLFC-RD is analyzed in terms of its accuracy, sensitivity or recall, specificity, precision, F1-measure and max F measure. The TLFC- RD method is also evaluated compared to three existing methods: U-Net with the Domain Adaptation Model (DAM), Two-Scale Fully Convolutional Network (TFCN) and a cooperative machine learning approach (i.e., TAAUWN). Experimental results show that the accuracy of the TLFC-RD method for the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) dataset is 99.12% higher than its competitors.


2021 ◽  
Author(s):  
Tomochika Fujisawa ◽  
Victor Noguerales ◽  
Emmanouil Meramveliotakis ◽  
Anna Papadopoulou ◽  
Alfried P Vogler

Complex bulk samples of invertebrates from biodiversity surveys present a great challenge for taxonomic identification, especially if obtained from unexplored ecosystems. High-throughput imaging combined with machine learning for rapid classification could overcome this bottleneck. Developing such procedures requires that taxonomic labels from an existing source data set are used for model training and prediction of an unknown target sample. Yet the feasibility of transfer learning for the classification of unknown samples remains to be tested. Here, we assess the efficiency of deep learning and domain transfer algorithms for family-level classification of below-ground bulk samples of Coleoptera from understudied forests of Cyprus. We trained neural network models with images from local surveys versus global databases of above-ground samples from tropical forests and evaluated how prediction accuracy was affected by: (a) the quality and resolution of images, (b) the size and complexity of the training set and (c) the transferability of identifications across very disparate source-target pairs that do not share any species or genera. Within-dataset classification accuracy reached 98% and depended on the number and quality of training images and on dataset complexity. The accuracy of between-datasets predictions was reduced to a maximum of 82% and depended greatly on the standardisation of the imaging procedure. When the source and target images were of similar quality and resolution, albeit from different faunas, the reduction of accuracy was minimal. Application of algorithms for domain adaptation significantly improved the prediction performance of models trained by non-standardised, low-quality images. Our findings demonstrate that existing databases can be used to train models and successfully classify images from unexplored biota, when the imaging conditions and classification algorithms are carefully considered. Also, our results provide guidelines for data acquisition and algorithmic development for high-throughput image-based biodiversity surveys.


Author(s):  
Greg Smith ◽  
John Lundberg ◽  
Masayoshi Shibatani

In the recent years, intelligent data-driven faultdiagnosis methods on gearboxes have been successfully developedand popularly applied in the industries. Currently, most ofthe machine learning techniques require that the training andtesting data are from the same distribution. However, thisassumption is difficult to be met in the real industries, sincethe gearbox operating conditions usually change in practice,which results in significant data distribution gap and diagnosticperformance deteriorations in applying the learned knowledgeon the new conditions. This paper proposes a deep learning-based domain adaptation method to address this issue. Theraw current signals are directly used as the model inputs fordiagnostics, which are easy to collect in the real industries andfacilitate practical applications. The maximum mean discrepancymetric is introduced to the deep neural network, the optimizationof which guarantees the extraction of generalized machineryhealth condition features across different operating conditions.The experiments on a real-world gearbox condition monitoringdataset validate the effectiveness of the proposed method, whichoffers a promising tool for cross-domain diagnosis in the realindustries.


Sign in / Sign up

Export Citation Format

Share Document