scholarly journals Additive Manufacturing from the Point of View of Materials Research

Author(s):  
Ville Laitinen ◽  
Mahdi Merabtene ◽  
Erica Stevens ◽  
Markus Chmielus ◽  
Jan Van Humbeeck ◽  
...  
Author(s):  
Michael Machado ◽  
Raul Fangueiro ◽  
Daniel Barros ◽  
Luís Nobre ◽  
João Bessa ◽  
...  

Abstract With the recent advances in the additive manufacturing (AM) production technologies, AM is becoming more common in today’s industry, nowadays is a normal practice to use this solution either to test a new prototype or to manufacture a functional product. The increase application is mainly due to significant developments in the production solutions of the AM. These recent developments are resulting in an increase search for new and more efficient production solutions. This search is always focused in producing more efficiently, with a greater variety of materials and produce part with better quality and proprieties. From an industrial point of view, one of the types of additive manufacturing that is increasing the percentage of use is the selective laser sintering (SLS) technologies. Although this process was first used in the mid-80’s, it has shown great developments in the recent years. This evolution of the process allowed it to become a solid solution even if it is highly time consuming, especially when compared with other types of addictive manufacturing. From the several aspects that make the SLS a robust solution is the fact that it offers a consistent solution to produce high complex part with good mechanical properties, and also the ability to use many core materials, from polymers, metal alloy, ceramics or even composites materials. Due to the fact that the production of part using SLS technologies takes a long time, shows the relevance to study the entire process in order to quantify the time spent in each stage a very important step. This study can be conducted with two major goals, in one hand to be able to predict the build time needed to complete a predetermined task, and in other hand, to improve the overall efficiency of the process based on the knowledge acquired in the previous analysis. These two aspects are important because they allow the machine operator to choose the production plan more carefully and also to know all the parameters of the process to make it more efficient. In this paper will be presented a survey of the major stages of a SLS process in order to quantify the time consumed in each one of the stages, and if possible, determine solution to reduce the time spent. To better understand the topic the paper will be divided according to the proprieties and time consumed in each of the elements of the process. In other words, it will be divided accordingly to a machine, laser and material point of view. Furthermore, this paper will be focused in the SLS process and the productions based in a polymeric powder, therefore also containing aspects related to the power source used.


2019 ◽  
Vol 34 (5) ◽  
pp. 1093-1105 ◽  
Author(s):  
Christina Öberg ◽  
Tawfiq Shams

Purpose With the overarching idea of disruptive technology and its effects on business, this paper focuses on how companies strategically consider meeting the challenge of a disruptive technology such as additive manufacturing. The purpose of this paper is to describe and discuss changes in positions and roles related to the implementation of a disruptive technology. Design/methodology/approach Additive manufacturing could be expected to have different consequences for parties based on their current supply chain positions. The paper therefore investigates companies’ strategies related to various supply chain positions and does so by departing from a position and role point of view. Three business cases related to metal 3D printing - illustrating sub-suppliers, manufacturers and logistics firms - describe as many strategies. Data for the cases were collected through meetings, interviews, seminars and secondary data focusing on both current business activities related to additive manufacturing and scenarios for the future. Findings The companies attempted to defend their current positions, leading to new roles for them. This disconnects the change of roles from that of positions. The changed roles indicate that all parties, regardless of supply chain positions, would move into competing producing roles, thereby indicating how a disruptive technology may disrupt network structures based on companies’ attempts to defend their positions. Originality/value The paper contributes to previous research by reporting a disconnect between positions and roles among firms when disruption takes place. The paper further denotes how the investigated firms largely disregarded network consequences at the disruptive stage, caused by the introduction of additive manufacturing. The paper also contributes to research on additive manufacturing by including a business dimension and linking this to positions and roles.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Flaviana Calignano ◽  
Manuela Galati ◽  
Luca Iuliano ◽  
Paolo Minetola

Additive manufacturing (AM) is a disruptive technology as it pushes the frontier of manufacturing towards a new design perspective, such as the ability to shape geometries that cannot be formed with any other traditional technique. AM has today shown successful applications in several fields such as the biomedical sector in which it provides a relatively fast and effective way to solve even complex medical cases. From this point of view, the purpose of this paper is to illustrate AM technologies currently used in the medical field and their benefits along with contemporary. The review highlights differences in processes, materials, and design of additive manufacturing techniques used in biomedical applications. Successful case studies are presented to emphasise the potentiality of AM processes. The presented review supports improvements in materials and design for future researches in biomedical surgeries using instruments and implants made by AM.


2020 ◽  
pp. 030936462094971 ◽  
Author(s):  
Branko Štefanovič ◽  
Monika Michalíková ◽  
Lucia Bednarčíková ◽  
Marianna Trebuňová ◽  
Jozef Živčák

Case description: Conventional methods for producing custom prosthetic fingers are time-consuming, can be uncomfortable for the patient, and require a skilled prosthetist. The subject was a 40-year-old male with congenital absence of the thumb and related metacarpal bone on the right non-dominant hand, anomaly of the lengths of individual upper limb segments, and contracture of the elbow joint. This hand presentation made it impossible for him to perform thumb opposition, which is a very important function for common daily activities. Objective: The goal was to design an individual passive thumb prosthesis using free open-source software, 3D scanning technology, and additive manufacturing methods (i.e., fused filament fabrication). Study design: Case report. Treatment: Artificial thumb prostheses with two types of bases and fastening interfaces were designed and manufactured. One combination was chosen as the best alternative. Outcomes: The shape, positioning, firmness, and fastening of the prosthesis were compliant enough for the patient to be able to hold objects with his healthy fingers and artificial thumb. This innovative approach to fabrication of a custom thumb prosthesis provided considerable advantages in terms of custom sizing, manufacturing time, rapid production, iteration, comfort, and costs when compared to conventional methods of manufacturing a hand prosthesis. Conclusion: The methodology of designing and manufacturing a prosthetic thumb using 3D scanning and additive manufacturing technologies have been demonstrated to be adequate from a practical point of view. These technologies show potential for use in the practice of prosthetics.


2007 ◽  
Vol 4 (15) ◽  
pp. 637-642 ◽  
Author(s):  
Peter Fratzl

Nature provides a wide range of materials with different functions and which may serve as a source of bio-inspiration for the materials scientist. The article takes the point of view that a successful translation of these ideas into the technical world requires more than the observation of nature. A thorough analysis of structure-function relations in natural tissues must precede the engineering of new bio-inspired materials. There are, indeed, many opportunities for lessons from the biological world: on growth and functional adaptation, about hierarchical structuring, on damage repair and self-healing. Biomimetic materials research is becoming a rapidly growing and enormously promising field. Serendipitous discovery from the observation of nature will be gradually replaced by a systematic approach involving the study of natural tissues in materials laboratories, the application of engineering principles to the further development of bio-inspired ideas and the generation of specific databases.


Author(s):  
Michael Maurer ◽  
Patricia Sierra ◽  
Patrik Meng

Additive manufacturing radically changes the design process giving unprecedented freedom of design and enabling a step change in part performance. The general idea of selecting appropriate candidates within the Alstom hot gas parts portfolio is described in this paper. The strategy as used in the selection process is to identify parts with either a high (internal) complexity or to choose parts with a high number of sub-parts and the necessary high number of assembly steps, which are needed with the current manufacturing methods (e.g. precision casting or weld assemblies). The current reheat burner front panel of the heavy duty gas turbine is today produced from three metal layers. The layer facing the hot gas contains the complex near-wall cooling channel system. The metal sheet facing the cold side features the acoustic damping volumes. An intermediate metal sheet separated the two systems. Brazing is used to assemble the sup parts into the final front panel. With the identified strategy to use additive manufacturing, the design is adapted to allow the production of a single component that includes all the functionality and avoids heavy machining and assembly steps. The paper focuses on the design changes and challenges that were required and observed during the adaption of the GT26 (Rating 2011 onwards) reheat burner front panel. Also the necessary adaptions of the qualification process and the lifetime assessments are described in detail. Finally, the additive manufacturing version of the reheat burner front panel was subjected to a heavy duty test program. Engine tests were completed. The disassembled SLM component was found in excellent condition. Subsequent material investigations have confirmed the good part condition from a metallurgical point of view.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Gianpaolo Savio ◽  
Stefano Rosso ◽  
Roberto Meneghello ◽  
Gianmaria Concheri

Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.


Author(s):  
Peter Paufler

AbstractThere are several reasons to recollect the merits of Gustav Ernst Robert Schulze on the occasion of Fritz Laves' anniversary. Firstly, he had been a good friend of Laves and shared his interest in intermetallic compounds. Secondly, his work on Laves phases, though containing important early results, is less well known for some reasons. Thirdly, Schulze was the founder of a very efficient research centre on intermetallics in Dresden which is still active today. Finally, he introduced Metal Physics at the TU Dresden as a broad subject of bringing together structure and properties of the metallic state from a more fundamental point of view. Later on, this had a clustering effect for the development of materials research institutes in Dresden.


2019 ◽  
Vol 28 (2) ◽  
pp. 174-188 ◽  
Author(s):  
Christina Öberg

Purpose Additive manufacturing, that is, layer-based manufacturing technologies, is thought to change supply chain operations from global to local, while also affecting design processes and product structures. As this transformation happens, a power struggle among various actors relating themselves to additive manufacturing has emerged. The purpose of this paper is to discuss and explain the development of additive manufacturing from a power dependence point of view. Design/methodology/approach The paper is based on data collected from a number of seminars hosting a total of 620 industry experts representing 102 companies in the area, and reflecting every step of the supply chain. Findings The paper points out how measures to deal and create power imbalances occur also related to indirect parties, and how the disruptive character of the supply chain leads to exercised power. Originality/value The power struggle provides new insights into how an emerging technology is realised and the effect of protectionism on such attempts. Specifically related to additive manufacturing, the paper illustrates the business side from various actors’ point of view, which adds to technological perspectives on additive manufacturing, as well as studies viewing the supply chain from a bird’s-eye perspective.


Sign in / Sign up

Export Citation Format

Share Document