An Multi-feature Fusion Object Detection System for Mobile IoT Devices and Edge Computing

Author(s):  
Xingyu Feng ◽  
Han Cao ◽  
Qindong Sun
Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3044
Author(s):  
Tao Ye ◽  
Baocheng Wang ◽  
Ping Song ◽  
Juan Li

The authors wish to make the following corrections to this paper [...]


Sensors ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 1916 ◽  
Author(s):  
Tao Ye ◽  
Baocheng Wang ◽  
Ping Song ◽  
Juan Li

Author(s):  
Jaber Almutairi ◽  
Mohammad Aldossary

AbstractRecently, the number of Internet of Things (IoT) devices connected to the Internet has increased dramatically as well as the data produced by these devices. This would require offloading IoT tasks to release heavy computation and storage to the resource-rich nodes such as Edge Computing and Cloud Computing. Although Edge Computing is a promising enabler for latency-sensitive related issues, its deployment produces new challenges. Besides, different service architectures and offloading strategies have a different impact on the service time performance of IoT applications. Therefore, this paper presents a novel approach for task offloading in an Edge-Cloud system in order to minimize the overall service time for latency-sensitive applications. This approach adopts fuzzy logic algorithms, considering application characteristics (e.g., CPU demand, network demand and delay sensitivity) as well as resource utilization and resource heterogeneity. A number of simulation experiments are conducted to evaluate the proposed approach with other related approaches, where it was found to improve the overall service time for latency-sensitive applications and utilize the edge-cloud resources effectively. Also, the results show that different offloading decisions within the Edge-Cloud system can lead to various service time due to the computational resources and communications types.


2021 ◽  
Vol 11 (11) ◽  
pp. 4894
Author(s):  
Anna Scius-Bertrand ◽  
Michael Jungo ◽  
Beat Wolf ◽  
Andreas Fischer ◽  
Marc Bui

The current state of the art for automatic transcription of historical manuscripts is typically limited by the requirement of human-annotated learning samples, which are are necessary to train specific machine learning models for specific languages and scripts. Transcription alignment is a simpler task that aims to find a correspondence between text in the scanned image and its existing Unicode counterpart, a correspondence which can then be used as training data. The alignment task can be approached with heuristic methods dedicated to certain types of manuscripts, or with weakly trained systems reducing the required amount of annotations. In this article, we propose a novel learning-based alignment method based on fully convolutional object detection that does not require any human annotation at all. Instead, the object detection system is initially trained on synthetic printed pages using a font and then adapted to the real manuscripts by means of self-training. On a dataset of historical Vietnamese handwriting, we demonstrate the feasibility of annotation-free alignment as well as the positive impact of self-training on the character detection accuracy, reaching a detection accuracy of 96.4% with a YOLOv5m model without using any human annotation.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5279
Author(s):  
Dong-Hoon Kwak ◽  
Guk-Jin Son ◽  
Mi-Kyung Park ◽  
Young-Duk Kim

The consumption of seaweed is increasing year by year worldwide. Therefore, the foreign object inspection of seaweed is becoming increasingly important. Seaweed is mixed with various materials such as laver and sargassum fusiforme. So it has various colors even in the same seaweed. In addition, the surface is uneven and greasy, causing diffuse reflections frequently. For these reasons, it is difficult to detect foreign objects in seaweed, so the accuracy of conventional foreign object detectors used in real manufacturing sites is less than 80%. Supporting real-time inspection should also be considered when inspecting foreign objects. Since seaweed requires mass production, rapid inspection is essential. However, hyperspectral imaging techniques are generally not suitable for high-speed inspection. In this study, we overcome this limitation by using dimensionality reduction and using simplified operations. For accuracy improvement, the proposed algorithm is carried out in 2 stages. Firstly, the subtraction method is used to clearly distinguish seaweed and conveyor belts, and also detect some relatively easy to detect foreign objects. Secondly, a standardization inspection is performed based on the result of the subtraction method. During this process, the proposed scheme adopts simplified and burdenless calculations such as subtraction, division, and one-by-one matching, which achieves both accuracy and low latency performance. In the experiment to evaluate the performance, 60 normal seaweeds and 60 seaweeds containing foreign objects were used, and the accuracy of the proposed algorithm is 95%. Finally, by implementing the proposed algorithm as a foreign object detection platform, it was confirmed that real-time operation in rapid inspection was possible, and the possibility of deployment in real manufacturing sites was confirmed.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1876
Author(s):  
Ioana Apostol ◽  
Marius Preda ◽  
Constantin Nila ◽  
Ion Bica

The Internet of Things has become a cutting-edge technology that is continuously evolving in size, connectivity, and applicability. This ecosystem makes its presence felt in every aspect of our lives, along with all other emerging technologies. Unfortunately, despite the significant benefits brought by the IoT, the increased attack surface built upon it has become more critical than ever. Devices have limited resources and are not typically created with security features. Lately, a trend of botnet threats transitioning to the IoT environment has been observed, and an army of infected IoT devices can expand quickly and be used for effective attacks. Therefore, identifying proper solutions for securing IoT systems is currently an important and challenging research topic. Machine learning-based approaches are a promising alternative, allowing the identification of abnormal behaviors and the detection of attacks. This paper proposes an anomaly-based detection solution that uses unsupervised deep learning techniques to identify IoT botnet activities. An empirical evaluation of the proposed method is conducted on both balanced and unbalanced datasets to assess its threat detection capability. False-positive rate reduction and its impact on the detection system are also analyzed. Furthermore, a comparison with other unsupervised learning approaches is included. The experimental results reveal the performance of the proposed detection method.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4798
Author(s):  
Fangni Chen ◽  
Anding Wang ◽  
Yu Zhang ◽  
Zhengwei Ni ◽  
Jingyu Hua

With the increasing deployment of IoT devices and applications, a large number of devices that can sense and monitor the environment in IoT network are needed. This trend also brings great challenges, such as data explosion and energy insufficiency. This paper proposes a system that integrates mobile edge computing (MEC) technology and simultaneous wireless information and power transfer (SWIPT) technology to improve the service supply capability of WSN-assisted IoT applications. A novel optimization problem is formulated to minimize the total system energy consumption under the constraints of data transmission rate and transmitting power requirements by jointly considering power allocation, CPU frequency, offloading weight factor and energy harvest weight factor. Since the problem is non-convex, we propose a novel alternate group iteration optimization (AGIO) algorithm, which decomposes the original problem into three subproblems, and alternately optimizes each subproblem using the group interior point iterative algorithm. Numerical simulations validate that the energy consumption of our proposed design is much lower than the two benchmark algorithms. The relationship between system variables and energy consumption of the system is also discussed.


Sign in / Sign up

Export Citation Format

Share Document