Study on Partial Replacement of Cement with Animal Bone Ash in Concrete at Elevated Temperatures

Author(s):  
Solomon Dagnaw ◽  
Tesfaye Alemu Mohammed
2021 ◽  
Vol 7 (10) ◽  
pp. 1741-1752
Author(s):  
Yasir N. Kadhim ◽  
Wail Asim Mohammad Hussain ◽  
Abdulrasool Thamer Abdulrasool

For the sake of enhancing the mechanical properties and durability of asphalt concrete, many studies suggest adding different admixtures, such as waste materials in the form of filler. These admixtures have a significant influence on the performance of asphalt concrete by plying a roll in filling the voids between particles and sometimes as a cementitious material. This study aims to improve the strength of asphalt concrete by adding crushed animal bone to the mix after carbonization at a temperature of 800 Co. Seven different percentages (10, 20, 30, 40, 50, 60, and 100%) of animal bone ash as a replacement for the filler percentage were added to the optimum asphalt concrete mix. A number of tests were conducted on asphalt concrete specimens to measure Marshall stability (MS), Marshall flow value (MF), voids filled with asphalt percentages (VFA), air void percentages (VA), voids in mineral aggregate percentages (VMA), and maximum theoretical specific gravity (GMM). From the results, the maximum stability of 14.85 KN was reached when using animal bone ash of 20% as a partial replacement for the conventionally used filler (limestone). In general, there are some improvements in the physical properties of asphalt concrete with animal bone ash, which can be related to the increase in the bond between the particles of aggregates and the bitumen material. Doi: 10.28991/cej-2021-03091757 Full Text: PDF


Recycling of materials has become a major interest for engineers. At present, the amount of slag deposited in storage yard adds up to millions of tons/year leading to the occupation of farm land and serious pollution to the environment, as a result of the rapid growth in the steel industry. Steel slag is made at 1500- 1650°C having a honey comp shape with high porosity. Using steel slag as the natural aggregate with a lower waste material cost can be considered as a good alternative for sustainable constructions. The objective of this study is to evaluate the performance of residual mechanical properties of concrete with steel slag as coarse aggregate partial replacement after exposing to high temperatures .This study investigates the behavior of using granulated slag as partial or fully coarse aggregate replacement with different percentages of 0%, 15%, 30%, 50% and 100% in concrete when subjected to elevated temperatures. Six groups of concrete mixes were prepared using various replacement percentages of slag exposed to different temperatures of 400 °C, 600 °C and 800 °C for different durations of 1hr, 1.5hr and 2hr. Evaluation tests were compressive strength, tensile strength, and bond strength. The steel slag concrete mixes showed week workability lower than control mix. A systematic increasing of almost up to 21.7% in compressive strength, and 66.2% in tensile strength with increasing the percentage of steel slag replacement to 50%. And the results showed improvement on concrete residual mechanical properties after subjected to elevated temperatures with the increase of steel slag content. The findings of this study give an overview of the effect of steel slag coarse aggregate replacement on concrete after exposed to high temperatures.


Author(s):  
A E Modupe ◽  
T M A Olayanju ◽  
O D Atoyebi ◽  
S J Aladegboye ◽  
T F Awolusi ◽  
...  

Author(s):  
Fatiha Kazi Aoual-Benslafa ◽  
Djemal Kerdal ◽  
Belkacem Mekerta ◽  
Abdelaziz Semcha

The actual shortage of land aggregates and environmental concerns raised by dumping at sea of dredged sediments (DS), more than ever, DS could constitute a new source of building materials. This experimental study investigates the potential of using DS from harbour of Oran in tunnel construction; the first objective is to determine their chemical, physical and mineralogical characteristics. The concept of enhancing building material characteristics based on the component characteristics of DS is considered. Thus, the treatment by the leaching and the natural decantation is used to decrease their salt and water content. Finally, the influence of various percentages of DS (from 20%, to up to 35% of sand mass by DS) in the mechanical behaviour of mortars was analyzed. Compressive strengths of a first set of mortar specimens were determined after 7, 28, 60 and 90 days of moist curing. The second set of mortar specimens, that were submitted to chemical attacks and elevated temperatures, had their residual compressive strengths determined at 118 days and 150 days. So far, laboratory results show that partial replacement of 20% or 25% of sand by DS in mortars give good results.


2014 ◽  
Vol 982 ◽  
pp. 79-83 ◽  
Author(s):  
Lenka Scheinherrová ◽  
Anton Trník ◽  
Eva Vejmelková ◽  
Pavel Reiterman ◽  
Igor Medveď ◽  
...  

In this paper, the effect of elevated temperatures (up to 1000 °C) on thermal properties of two similar types of high-performance concrete containing fine ceramic waste and clay shale, respectively are used as a partial replacement of the cement binder is investigated. Samples were prepared in the same manner and both types of concrete contained from 0 to 60 mass% of either replacement. Both replacements were used in our study as a pozzolana active material which can partially replace cement binder and can improve the final properties of concrete. The aim of this paper is to compare the influence of two different pozzolana active materials on selected thermal properties of high-performance concrete at high temperatures up to 1000 °C. The investigation was performed using the differential scanning calorimetry and these results were supplemented by measurement on horizontal dilatometer.


2021 ◽  
Vol 12 (1) ◽  
pp. 67-78
Author(s):  
S. P. Kuksenko ◽  
◽  
H. O. Kaleniuk ◽  
Yu. O. Tarasenko ◽  
M. T. Kartel ◽  
...  

Even partial replacement of graphite in the anode of lithium-ion batteries with silicon can significantly increase their specific energy. But the issue is the insufficient life cycle of such batteries due to the accelerated degradation of the liquid organic electrolyte with traditional lithium hexafluorophosphate, especially at elevated temperatures. The subject of discussions and further research are the processes involving a natural oxide layer on the surface of silicon in the manufacture and electrochemical litiation–delitiation of Si-containing electrodes. Among the most promising areas for solving the issues of practical application of silicon are new additives to the electrolyte and polymeric binders for electrode masses. This paper demonstrates the capability of trimethylsilylisocyanate (with aminosilane and isocyanate functional groups) as an additive to a liquid organic electrolyte (LiPF6 / fluoroethylene carbonate + ethyl methyl carbonate + vinylene carbonate + ethylene sulfite) to scavenge the reactive HF and PF5 species that alleviates the thermal decomposition of fluoroethylene carbonate at elevated temperatures. This makes it possible to increase the electrochemical parameters of half-cells with a hybrid graphite–nanosilicon working electrode when using water-based binders – carboxymethylcellulose and styrene-butadiene rubber. The addition of trimethylsilylisocyanate in the electrolyte significantly improves the reversible capacity of hybrid electrodes and reduces the accumulated irreversible capacity during prolonged cycling at normal temperature and after exposure at 50 °C, therefore to be effective for use in high-energy lithium-ion batteries.


Author(s):  
Arash Sedaghatdoost ◽  
Kiachehr Behfarnia ◽  
Hamidreza Moosaei ◽  
Mohammad Bayati ◽  
Mohammad Sadegh Vaezi

AbstractThe properties of mortars containing waste glass powder (WGP) as a cement substitute for sustainable construction at various high temperatures were investigated. For this purpose, specimens from four mixtures with WGP at various percentage levels of 0, 5, 10 and 15% were prepared and exposed to the specified temperatures. After that, the compressive and flexural strength were determined at high temperatures. The mass loss was also measured by weighing the samples before and after exposing to the high temperatures. The microstructure of mortars was analyzed by petrographic examination. Based on the obtained results, incorporation of WGP as partial replacement of cement could improve strength characteristics of the mortars at the elevated temperatures up to 17%. Also, the optimum ratio of cement replacement level was found to be 10%. In addition, the petrographic images of the mortars showed that at the same time with the strength loss of specimens, the red discoloration of WGP occurred that is attributed to the oxidation of iron compounds that starts at temperatures above 200 °C.


Sign in / Sign up

Export Citation Format

Share Document