scholarly journals Formally Verified Switching Logic for Recoverability of Aircraft Controller

Author(s):  
Ratan Lal ◽  
Aaron McKinnis ◽  
Dustin Hauptman ◽  
Shawn Keshmiri ◽  
Pavithra Prabhakar

AbstractIn this paper, we investigate the design of a safe hybrid controller for an aircraft that switches between a classical linear quadratic regulator (LQR) controller and a more intelligent artificial neural network (ANN) controller. Our objective is to switch safely between the controllers, such that the aircraft is always recoverable within a fixed amount of time while allowing the maximum time of operation for the ANN controller. There is a priori known safety zone for the LQR controller operation in which the aircraft never stalls, over accelerates, or exceeds maximum structural loading, and hence, by switching to the LQR controller just before exiting this zone, one can guarantee safety. However, this priori known safety zone is conservative, and therefore, limits the time of operation for the ANN controller. We apply reachability analysis to expand the known safety zone, such that the LQR controller will always be able to drive the aircraft back to the safe zone from the expanded zone (“recoverable zone") within a fixed duration. The “recoverable zone" extends the time of operation of the ANN controller. We perform simulations using the hybrid controller corresponding to the recoverable zone and observe that the design is indeed safe.

Author(s):  
Noor Salam Al-Fallooji ◽  
◽  
Maysam Abbod

Helicopter instability is one of the most limitations that should be addressed in a nonlinear application. Accordingly, researchers are invited to design a robust and reliable controller to obtain a stable system and enhance its overall performance. The present study focuses on the use of the intelligent system in controlling the pitch and yaw angles. This lead to controlling the elevation and the direction of the helicopter. Further to the application of the Linear Quadratic Regulator (LQR) controller, this research implemented the Proportional Integral Derivative (PID), Fuzzy Logic Control (FLC), and Artificial Neural Network (ANN). The results show that FLC achieved a good controllability for both angles, particularly for the pitch angle in comparison to the nonlinear auto regressive moving average (NARMA-L2). Moreover, NARMA-L2 requires further improvement by using, for example, the swarm optimization method to provide better controllability. The PID controller, on the other hand, had a greater capability in controlling the yaw angle in comparison to the other controllers implemented. Accordingly, it is suggested that the integration of PID and FLC may lead to more optimal outcomes.


2021 ◽  
Vol 11 (6) ◽  
pp. 2699
Author(s):  
Mohamad Norherman Shauqee ◽  
Parvathy Rajendran ◽  
Nurulasikin Mohd Suhadis

A hybrid proportional double derivative and linear quadratic regulator (PD2-LQR) controller is designed for altitude (z) and attitude (roll, pitch, and yaw) control of a quadrotor vehicle. The derivation of a mathematical model of the quadrotor is formulated based on the Newton–Euler approach. An appropriate controller’s parameter must be obtained to obtain a superior control performance. Therefore, we exploit the advantages of the nature-inspired optimization algorithm called Grey Wolf Optimizer (GWO) to search for those optimal values. Hence, an improved version of GWO called IGWO is proposed and used instead of the original one. A comparative study with the conventional controllers, namely proportional derivative (PD), proportional integral derivative (PID), linear quadratic regulator (LQR), proportional linear quadratic regulator (P-LQR), proportional derivative and linear quadratic regulator (PD-LQR), PD2-LQR, and original GWO-based PD2-LQR, was undertaken to show the effectiveness of the proposed approach. An investigation of 20 different quadcopter models using the proposed hybrid controller is presented. Simulation results prove that the IGWO-based PD2-LQR controller can better track the desired reference input with shorter rise time and settling time, lower percentage overshoot, and minimal steady-state error and root mean square error (RMSE).


Author(s):  
Ishan Chawla ◽  
Vikram Chopra ◽  
Ashish Singla

AbstractFrom the last few decades, inverted pendulums have become a benchmark problem in dynamics and control theory. Due to their inherit nature of nonlinearity, instability and underactuation, these are widely used to verify and implement emerging control techniques. Moreover, the dynamics of inverted pendulum systems resemble many real-world systems such as segways, humanoid robots etc. In the literature, a wide range of controllers had been tested on this problem, out of which, the most robust being the sliding mode controller while the most optimal being the linear quadratic regulator (LQR) controller. The former has a problem of non-robust reachability phase while the later lacks the property of robustness. To address these issues in both the controllers, this paper presents the novel implementation of integral sliding mode controller (ISMC) for stabilization of a spatial inverted pendulum (SIP), also known as an x-y-z inverted pendulum. The structure has three control inputs and five controlled outputs. Mathematical modeling of the system is done using Euler Lagrange approach. ISMC has an advantage of eliminating non-robust reachability phase along with enhancing the robustness of the nominal controller (LQR Controller). To validate the robustness of ISMC to matched uncertainties, an input disturbance is added to the nonlinear model of the system. Simulation results on two different case studies demonstrate that the proposed controller is more robust as compared to conventional LQR controller. Furthermore, the problem of chattering in the controller is dealt by smoothening the controller inputs to the system with insignificant loss in robustness.


Author(s):  
G. Yakubu ◽  
G. Sani ◽  
S. B. Abdulkadir ◽  
A. A.Jimoh ◽  
M. Francis

Full car passive and active damping system mathematical model was developed. Computer simulation using MATLAB was performed and analyzed. Two different road profile were used to check the performance of the passive and active damping using Linear Quadratic Regulator controller (LQR)Road profile 1 has three bumps with amplitude of 0.05m, 0.025 m and 0.05 m. Road profile 2 has a bump with amplitude of 0.05 m and a hole of -0.025 m. For all the road profiles, there were 100% amplitude reduction in Wheel displacement, Wheel deflection, Suspension travel and body displacement, and 97.5% amplitude reduction in body acceleration for active damping with LQR controller as compared to the road profile and 54.0% amplitude reduction in body acceleration as compared to the passive damping system. For the two road profiles, the settling time for all the observed parameters was less than two (2) seconds. The present work gave faster settling time for mass displacement, body acceleration and wheel displacement.


Author(s):  
Trong-Thang Nguyen

<span>This research aims to propose an optimal controller for controlling the speed of the Direct Current (DC) motor. Based on the mathematical equations of DC Motor, the author builds the equations of the state space model and builds the linear quadratic regulator (LQR) controller to minimize the error between the set speed and the response speed of DC motor. The results of the proposed controller are compared with the traditional controllers as the PID, the feed-forward controller. The simulation results show that the quality of the control system in the case of LQR controller is much higher than the traditional controllers. The response speed always follows the set speed with the short conversion time, there isn't overshoot. The response speed is almost unaffected when the torque impact on the shaft is changed.</span>


Author(s):  
Shusheng Zang ◽  
Jaqiang Pan

The design of a modern Linear Quadratic Regulator (LQR) is described for a test steam injected gas turbine (STIG) unit. The LQR controller is obtained by using the fuel flow rate and the injected steam flow rate as the output parameters. To meet the goal of the shaft speed control, a classical Proportional Differential (PD) controller is compared to the LQR controller design. The control performance of the dynamic response of the STIG plant in the case of rejection of load is evaluated. The results of the computer simulation show a remarkable improvement on the dynamic performance of the STIG unit.


Author(s):  
Ishan Chawla ◽  
Ashish Singla

AbstractFrom the last five decades, inverted pendulum (IP) has been considered as a benchmark problem in the control literature due to its inherit nature of instability, non-linearity and underactuation. Its applicability in wide range of practical systems, demands the need of a robust controller. It is found in the literature that wide range of controllers had been tested on this problem, out of which the most robust being sliding mode controller while the most optimal being linear quadratic regulator (LQR) controller. The former has a problem of discontinuity and chattering, while the latter lacks the property of robustness. To address the robustness issue in LQR controller, this paper proposes a novel robust LQR-based adaptive neural based fuzzy inference system controller, which is a hybrid of LQR and fuzzy inference system. The proposed controller is designed and implemented on rotary inverted pendulum. Further, to validate the robustness of proposed controller to parametric uncertainties, pendulum mass is varied. Simulation and experimental results show that as compared to LQR controller, the proposed controller is robust to variations in pendulum mass and has shown satisfactory performance.


2015 ◽  
Vol 761 ◽  
pp. 227-232 ◽  
Author(s):  
Tang Teng Fong ◽  
Zamberi Jamaludin ◽  
Ahmad Yusairi Bani Hashim ◽  
Muhamad Arfauz A. Rahman

The control of rotary inverted pendulum is a case of classical robust controller design of non-linear system applications. In the control system design, a precise system model is a pre-requisite for an enhanced and optimum control performance. This paper describes the dynamic system model of an inverted pendulum system. The mathematical model was derived, linearized at the upright equilibrium points and validated using non-linear least square frequency domain identification approach based on measured frequency response function of the physical system. Besides that, a linear quadratic regulator (LQR) controller was designed as the balancing controller for the pendulum. An extensive analysis was performed on the effect of the weighting parameter Q on the static time of arm, balance time of pendulum, oscillation, as well as, response of arm and pendulum, in order to determine the optimum state-feedback control vector, K. Furthermore, the optimum control vector was successfully applied and validated on the physical system to stabilize the pendulum in its upright position. In the experimental validation, the LQR controller was able to keep the pendulum in its upright position even in the presence of external disturbance forces.


Author(s):  
Dechrit Maneetham ◽  
Petrus Sutyasadi

This research proposes control method to balance and stabilize an inverted pendulum. A robust control was analyzed and adjusted to the model output with real time feedback. The feedback was obtained using state space equation of the feedback controller. A linear quadratic regulator (LQR) model tuning and control was applied to the inverted pendulum using internet of things (IoT). The system's conditions and performance could be monitored and controlled via personal computer (PC) and mobile phone. Finally, the inverted pendulum was able to be controlled using the LQR controller and the IoT communication developed will monitor to check the all conditions and performance results as well as help the inverted pendulum improved various operations of IoT control is discussed.


2014 ◽  
Vol 622 ◽  
pp. 23-31
Author(s):  
T. Velayudham Narmadha ◽  
Chackaravarthy Baskaran ◽  
K. Sivakumar

-In this paper , performance of fuzzy PD , fuzzy PI , fuzzy PD+I , fuzzy PID controllers are evaluated and compared. This paper also describes the speed control based on Linear Quadratic Regulator (LQR) technique. The comparison is based on their ability of controlling the speed of DC motor, which merely focuses on performance index of the controllers, and also time domain specifications such as rise time, settling time and peak overshoot. The controller is modelled using MATLAB software, the simulation results shows that the fuzzy PID controllers are the best performing candidates in all aspects but it as higher overshoot and IAE in comparison with optimal LQR. The Fuzzy PI controller exhibited null offset but suffers from poor stability and peak overshoot, whereas the fuzzy PD controller has fast rise time, with no overshoots but the IAE is much greater. Thus, the comparative analysis recommends fuzzy PID controller but it is usually associated with complicated rule base and tedious tuning. To circumvent these problems, the proposed LQR controller gives better performance than the other controllers.


Sign in / Sign up

Export Citation Format

Share Document