scholarly journals Proportional Double Derivative Linear Quadratic Regulator Controller Using Improvised Grey Wolf Optimization Technique to Control Quadcopter

2021 ◽  
Vol 11 (6) ◽  
pp. 2699
Author(s):  
Mohamad Norherman Shauqee ◽  
Parvathy Rajendran ◽  
Nurulasikin Mohd Suhadis

A hybrid proportional double derivative and linear quadratic regulator (PD2-LQR) controller is designed for altitude (z) and attitude (roll, pitch, and yaw) control of a quadrotor vehicle. The derivation of a mathematical model of the quadrotor is formulated based on the Newton–Euler approach. An appropriate controller’s parameter must be obtained to obtain a superior control performance. Therefore, we exploit the advantages of the nature-inspired optimization algorithm called Grey Wolf Optimizer (GWO) to search for those optimal values. Hence, an improved version of GWO called IGWO is proposed and used instead of the original one. A comparative study with the conventional controllers, namely proportional derivative (PD), proportional integral derivative (PID), linear quadratic regulator (LQR), proportional linear quadratic regulator (P-LQR), proportional derivative and linear quadratic regulator (PD-LQR), PD2-LQR, and original GWO-based PD2-LQR, was undertaken to show the effectiveness of the proposed approach. An investigation of 20 different quadcopter models using the proposed hybrid controller is presented. Simulation results prove that the IGWO-based PD2-LQR controller can better track the desired reference input with shorter rise time and settling time, lower percentage overshoot, and minimal steady-state error and root mean square error (RMSE).

2021 ◽  
Vol 12 (1) ◽  
pp. 77-97
Author(s):  
M. E. Mousa ◽  
M. A. Ebrahim ◽  
Magdy M. Zaky ◽  
E. M. Saied ◽  
S. A. Kotb

The inverted pendulum system (IPS) is considered the milestone of many robotic-based industries. In this paper, a new variant of variable structure adaptive fuzzy (VSAF) is used with new reduced linear quadratic regulator (RLQR) and feedforward gain for enhancing the stability of IPS. The optimal determining of VSAF parameters as well as Q and R matrices of RLQR are obtained by using a modified grey wolf optimizer with adaptive constants property via particle swarm optimization technique (GWO/PSO-AC). A comparison between the hybrid GWO/PSO-AC and classical GWO/PSO based on multi-objective function is provided to justify the superiority of the proposed technique. The IPS equipped with the hybrid GWO/PSO-AC-based controllers has minimum settling time, rise time, undershoot, and overshoot results for the two system outputs (cart position and pendulum angle). The system is subjected to robustness tests to ensure that the system can cope with small as well as significant disturbances.


Author(s):  
Ratan Lal ◽  
Aaron McKinnis ◽  
Dustin Hauptman ◽  
Shawn Keshmiri ◽  
Pavithra Prabhakar

AbstractIn this paper, we investigate the design of a safe hybrid controller for an aircraft that switches between a classical linear quadratic regulator (LQR) controller and a more intelligent artificial neural network (ANN) controller. Our objective is to switch safely between the controllers, such that the aircraft is always recoverable within a fixed amount of time while allowing the maximum time of operation for the ANN controller. There is a priori known safety zone for the LQR controller operation in which the aircraft never stalls, over accelerates, or exceeds maximum structural loading, and hence, by switching to the LQR controller just before exiting this zone, one can guarantee safety. However, this priori known safety zone is conservative, and therefore, limits the time of operation for the ANN controller. We apply reachability analysis to expand the known safety zone, such that the LQR controller will always be able to drive the aircraft back to the safe zone from the expanded zone (“recoverable zone") within a fixed duration. The “recoverable zone" extends the time of operation of the ANN controller. We perform simulations using the hybrid controller corresponding to the recoverable zone and observe that the design is indeed safe.


2020 ◽  
Vol 19 ◽  

Inverted Pendulum system is one of the most exciting problems in control theory. In this research work, a new variant of Grey Wolf optimizer (GWO) via Particle Swarm Optimization (PSO) based on Adaptive Constants (AC) is proposed. The proposed technique (GWO/PSO-AC) is tested via twenty-three benchmark functions and compared to GWO based on PSO without adaptive constants (GWO/PSO). The suggested technique shows superiority in determining the optimal solutions for the well-established benchmark test functions with high computing performance compared to alternative techniques. The proposed GWO/PSO-AC technique, is employed to tune the parameters of the Variable Structure Adaptive Fuzzy (VSAF) controller in addition to the Reduced Linear Quadratic Regulator (RLQR) suggested by the authors. Both controllers are used to stabilize the cart position and to swing up the pendulum angle. The RLQR has an advantage over regular LQR, which is, the numberof the required parameters to obtain the required LQR gains is reduced. The proposed technique is compared with two optimization techniques. The proposed technique achieves high performance for both the cart position and the pendulum angle. The attained results are very promising.


Author(s):  
Ishan Chawla ◽  
Vikram Chopra ◽  
Ashish Singla

AbstractFrom the last few decades, inverted pendulums have become a benchmark problem in dynamics and control theory. Due to their inherit nature of nonlinearity, instability and underactuation, these are widely used to verify and implement emerging control techniques. Moreover, the dynamics of inverted pendulum systems resemble many real-world systems such as segways, humanoid robots etc. In the literature, a wide range of controllers had been tested on this problem, out of which, the most robust being the sliding mode controller while the most optimal being the linear quadratic regulator (LQR) controller. The former has a problem of non-robust reachability phase while the later lacks the property of robustness. To address these issues in both the controllers, this paper presents the novel implementation of integral sliding mode controller (ISMC) for stabilization of a spatial inverted pendulum (SIP), also known as an x-y-z inverted pendulum. The structure has three control inputs and five controlled outputs. Mathematical modeling of the system is done using Euler Lagrange approach. ISMC has an advantage of eliminating non-robust reachability phase along with enhancing the robustness of the nominal controller (LQR Controller). To validate the robustness of ISMC to matched uncertainties, an input disturbance is added to the nonlinear model of the system. Simulation results on two different case studies demonstrate that the proposed controller is more robust as compared to conventional LQR controller. Furthermore, the problem of chattering in the controller is dealt by smoothening the controller inputs to the system with insignificant loss in robustness.


Author(s):  
G. Yakubu ◽  
G. Sani ◽  
S. B. Abdulkadir ◽  
A. A.Jimoh ◽  
M. Francis

Full car passive and active damping system mathematical model was developed. Computer simulation using MATLAB was performed and analyzed. Two different road profile were used to check the performance of the passive and active damping using Linear Quadratic Regulator controller (LQR)Road profile 1 has three bumps with amplitude of 0.05m, 0.025 m and 0.05 m. Road profile 2 has a bump with amplitude of 0.05 m and a hole of -0.025 m. For all the road profiles, there were 100% amplitude reduction in Wheel displacement, Wheel deflection, Suspension travel and body displacement, and 97.5% amplitude reduction in body acceleration for active damping with LQR controller as compared to the road profile and 54.0% amplitude reduction in body acceleration as compared to the passive damping system. For the two road profiles, the settling time for all the observed parameters was less than two (2) seconds. The present work gave faster settling time for mass displacement, body acceleration and wheel displacement.


Author(s):  
Trong-Thang Nguyen

<span>This research aims to propose an optimal controller for controlling the speed of the Direct Current (DC) motor. Based on the mathematical equations of DC Motor, the author builds the equations of the state space model and builds the linear quadratic regulator (LQR) controller to minimize the error between the set speed and the response speed of DC motor. The results of the proposed controller are compared with the traditional controllers as the PID, the feed-forward controller. The simulation results show that the quality of the control system in the case of LQR controller is much higher than the traditional controllers. The response speed always follows the set speed with the short conversion time, there isn't overshoot. The response speed is almost unaffected when the torque impact on the shaft is changed.</span>


Author(s):  
C. Mallika ◽  
S. Selvamuthukumaran

AbstractDiabetes is an extremely serious hazard to global health and its incidence is increasing vividly. In this paper, we develop an effective system to diagnose diabetes disease using a hybrid optimization-based Support Vector Machine (SVM).The proposed hybrid optimization technique integrates a Crow Search algorithm (CSA) and Binary Grey Wolf Optimizer (BGWO) for exploiting the full potential of SVM in the diabetes diagnosis system. The effectiveness of our proposed hybrid optimization-based SVM (hereafter called CS-BGWO-SVM) approach is carefully studied on the real-world databases such as UCIPima Indian standard dataset and the diabetes type dataset from the Data World repository. To evaluate the CS-BGWO-SVM technique, its performance is related to several state-of-the-arts approaches using SVM with respect to predictive accuracy, Intersection Over-Union (IoU), specificity, sensitivity, and the area under receiver operator characteristic curve (AUC). The outcomes of empirical analysis illustrate that CS-BGWO-SVM can be considered as a more efficient approach with outstanding classification accuracy. Furthermore, we perform the Wilcoxon statistical test to decide whether the proposed cohesive CS-BGWO-SVM approach offers a substantial enhancement in terms of performance measures or not. Consequently, we can conclude that CS-BGWO-SVM is the better diabetes diagnostic model as compared to modern diagnosis methods previously reported in the literature.


Author(s):  
Shusheng Zang ◽  
Jaqiang Pan

The design of a modern Linear Quadratic Regulator (LQR) is described for a test steam injected gas turbine (STIG) unit. The LQR controller is obtained by using the fuel flow rate and the injected steam flow rate as the output parameters. To meet the goal of the shaft speed control, a classical Proportional Differential (PD) controller is compared to the LQR controller design. The control performance of the dynamic response of the STIG plant in the case of rejection of load is evaluated. The results of the computer simulation show a remarkable improvement on the dynamic performance of the STIG unit.


Author(s):  
Ishan Chawla ◽  
Ashish Singla

AbstractFrom the last five decades, inverted pendulum (IP) has been considered as a benchmark problem in the control literature due to its inherit nature of instability, non-linearity and underactuation. Its applicability in wide range of practical systems, demands the need of a robust controller. It is found in the literature that wide range of controllers had been tested on this problem, out of which the most robust being sliding mode controller while the most optimal being linear quadratic regulator (LQR) controller. The former has a problem of discontinuity and chattering, while the latter lacks the property of robustness. To address the robustness issue in LQR controller, this paper proposes a novel robust LQR-based adaptive neural based fuzzy inference system controller, which is a hybrid of LQR and fuzzy inference system. The proposed controller is designed and implemented on rotary inverted pendulum. Further, to validate the robustness of proposed controller to parametric uncertainties, pendulum mass is varied. Simulation and experimental results show that as compared to LQR controller, the proposed controller is robust to variations in pendulum mass and has shown satisfactory performance.


Sign in / Sign up

Export Citation Format

Share Document