Significant Impact of Improved Machine Learning Algorithm in The Processes of Large Data Sets

Author(s):  
Virendra Tiwari ◽  
Balendra Garg ◽  
Uday Prakash Sharma

The machine learning algorithms are capable of managing multi-dimensional data under the dynamic environment. Despite its so many vital features, there are some challenges to overcome. The machine learning algorithms still requires some additional mechanisms or procedures for predicting a large number of new classes with managing privacy. The deficiencies show the reliable use of a machine learning algorithm relies on human experts because raw data may complicate the learning process which may generate inaccurate results. So the interpretation of outcomes with expertise in machine learning mechanisms is a significant challenge in the machine learning algorithm. The machine learning technique suffers from the issue of high dimensionality, adaptability, distributed computing, scalability, the streaming data, and the duplicity. The main issue of the machine learning algorithm is found its vulnerability to manage errors. Furthermore, machine learning techniques are also found to lack variability. This paper studies how can be reduced the computational complexity of machine learning algorithms by finding how to make predictions using an improved algorithm.

Author(s):  
Abraham García-Aliaga ◽  
Moisés Marquina ◽  
Javier Coterón ◽  
Asier Rodríguez-González ◽  
Sergio Luengo-Sánchez

The purpose of this research was to determine the on-field playing positions of a group of football players based on their technical-tactical behaviour using machine learning algorithms. Each player was characterized according to a set of 52 non-spatiotemporal descriptors including offensive, defensive and build-up variables that were computed from OPTA’s on-ball event records of the matches for 18 national leagues between the 2012 and 2019 seasons. To test whether positions could be identified from the statistical performance of the players, the dimensionality reduction techniques were used. To better understand the differences between the player positions, the most discriminatory variables for each group were obtained as a set of rules discovered by RIPPER, a machine learning algorithm. From the combination of both techniques, we obtained useful conclusions to enhance the performance of players and to identify positions on the field. The study demonstrates the suitability and potential of artificial intelligence to characterize players' positions according to their technical-tactical behaviour, providing valuable information to the professionals of this sport.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 143 ◽  
Author(s):  
J. Deepika ◽  
T. Senthil ◽  
C. Rajan ◽  
A. Surendar

With the greater development of technology and automation human history is predominantly updated. The technology movement shifted from large mainframes to PCs to cloud when computing the available data for a larger period. This has happened only due to the advent of many tools and practices, that elevated the next generation in computing. A large number of techniques has been developed so far to automate such computing. Research dragged towards training the computers to behave similar to human intelligence. Here the diversity of machine learning came into play for knowledge discovery. Machine Learning (ML) is applied in many areas such as medical, marketing, telecommunications, and stock, health care and so on. This paper presents reviews about machine learning algorithm foundations, its types and flavors together with R code and Python scripts possibly for each machine learning techniques.  


2020 ◽  
Vol 17 (9) ◽  
pp. 4294-4298
Author(s):  
B. R. Sunil Kumar ◽  
B. S. Siddhartha ◽  
S. N. Shwetha ◽  
K. Arpitha

This paper intends to use distinct machine learning algorithms and exploring its multi-features. The primary advantage of machine learning is, a machine learning algorithm can predict its work automatically by learning what to do with information. This paper reveals the concept of machine learning and its algorithms which can be used for different applications such as health care, sentiment analysis and many more. Sometimes the programmers will get confused which algorithm to apply for their applications. This paper provides an idea related to the algorithm used on the basis of how accurately it fits. Based on the collected data, one of the algorithms can be selected based upon its pros and cons. By considering the data set, the base model is developed, trained and tested. Then the trained model is ready for prediction and can be deployed on the basis of feasibility.


E-commerce is evolving at a rapid pace that new doors have been opened for the people to express their emotions towards the products. The opinions of the customers plays an important role in the e-commerce sites. It is practically a tedious job to analyze the opinions of users and form a pros and cons for respective products. This paper develops a solution through machine learning algorithms by pre-processing the reviews based on features of mobile products. This mainly focus on aspect level of opinions which uses SentiWordNet, Natural Language Processing and aggregate scores for analyzing the text reviews. The experimental results provide the visual representation of products which provide better understanding of product reviews rather than reading through long textual reviews which includes strengths and weakness of the product using Naive Bayes algorithm. This results also helps the e-commerce vendors to overcome the weakness of the products and meet the customer expectations.


The aim of this research is to do risk modelling after analysis of twitter posts based on certain sentiment analysis. In this research we analyze posts of several users or a particular user to check whether they can be cause of concern to the society or not. Every sentiment like happy, sad, anger and other emotions are going to provide scaling of severity in the conclusion of final table on which machine learning algorithm is applied. The data which is put under the machine learning algorithms are been monitored over a period of time and it is related to a particular topic in an area


Author(s):  
Namrata Dhanda ◽  
Stuti Shukla Datta ◽  
Mudrika Dhanda

Human intelligence is deeply involved in creating efficient and faster systems that can work independently. Creation of such smart systems requires efficient training algorithms. Thus, the aim of this chapter is to introduce the readers with the concept of machine learning and the commonly employed learning algorithm for developing efficient and intelligent systems. The chapter gives a clear distinction between supervised and unsupervised learning methods. Each algorithm is explained with the help of suitable example to give an insight to the learning process.


Author(s):  
Ladly Patel ◽  
Kumar Abhishek Gaurav

In today's world, a huge amount of data is available. So, all the available data are analyzed to get information, and later this data is used to train the machine learning algorithm. Machine learning is a subpart of artificial intelligence where machines are given training with data and the machine predicts the results. Machine learning is being used in healthcare, image processing, marketing, etc. The aim of machine learning is to reduce the work of the programmer by doing complex coding and decreasing human interaction with systems. The machine learns itself from past data and then predict the desired output. This chapter describes machine learning in brief with different machine learning algorithms with examples and about machine learning frameworks such as tensor flow and Keras. The limitations of machine learning and various applications of machine learning are discussed. This chapter also describes how to identify features in machine learning data.


2021 ◽  
Author(s):  
Catherine Ollagnier ◽  
Claudia Kasper ◽  
Anna Wallenbeck ◽  
Linda Keeling ◽  
Siavash A Bigdeli

Tail biting is a detrimental behaviour that impacts the welfare and health of pigs. Early detection of tail biting precursor signs allows for preventive measures to be taken, thus avoiding the occurrence of the tail biting event. This study aimed to build a machine-learning algorithm for real time detection of upcoming tail biting outbreaks, using feeding behaviour data recorded by an electronic feeder. Prediction capacities of seven machine learning algorithms (e.g., random forest, neural networks) were evaluated from daily feeding data collected from 65 pens originating from 2 herds of grower-finisher pigs (25-100kg), in which 27 tail biting events occurred. Data were divided into training and testing data, either by randomly splitting data into 75% (training set) and 25% (testing set), or by randomly selecting pens to constitute the testing set. The random forest algorithm was able to predict 70% of the upcoming events with an accuracy of 94%, when predicting events in pens for which it had previous data. The detection of events for unknown pens was less sensitive, and the neural network model was able to detect 14% of the upcoming events with an accuracy of 63%. A machine-learning algorithm based on ongoing data collection should be considered for implementation into automatic feeder systems for real time prediction of tail biting events.


InterConf ◽  
2021 ◽  
pp. 393-403
Author(s):  
Olexander Shmatko ◽  
Volodimir Fedorchenko ◽  
Dmytro Prochukhan

Today the banking sector offers its clients many different financial services such as ATM cards, Internet banking, Debit card, and Credit card, which allows attracting a large number of new customers. This article proposes an information system for detecting credit card fraud using a machine learning algorithm. Usually, credit cards are used by the customer around the clock, so the bank's server can track all transactions using machine learning algorithms. It must find or predict fraud detection. The dataset contains characteristics for each transaction and fraudulent transactions need to be classified and detected. For these purposes, the work proposes the use of the Random Forest algorithm.


2020 ◽  
Vol 214 ◽  
pp. 02047
Author(s):  
Haoxuan Li ◽  
Xueyan Zhang ◽  
Ziyan Li ◽  
Chunyuan Zheng

In recent years, many scholars have used different methods to predict and select stocks. Empirical studies have shown that in multi-factor models, machine learning algorithms perform better on stock selection than traditional statistical methods. This article selects six classic machine learning algorithms, and takes the CSI 500 component stocks as an example, using 19 factors to select stocks. In this article, we introduce four of these algorithms in detail and apply them to select stocks. Finally, we back-test six machine learning algorithms, list the data, analyze the performance of each algorithm, and put forward some ideas on the direction of machine learning algorithm improvement.


Sign in / Sign up

Export Citation Format

Share Document