A Low-Cost Human-Robot Interface for the Motion Planning of Robotic Hands

2021 ◽  
pp. 450-464
Author(s):  
Alice Miriam Howard ◽  
Emanuele Lindo Secco
2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Bilal M. Yousuf ◽  
Asim Mehdi ◽  
Abdul Saboor Khan ◽  
Aqib Noor ◽  
Arslan Ali

In recent years, reproduction of human mechanical hand with upgraded abilities is one of the major concerns. This paper addresses the problems of underactuated robotic hand with low cost design as it avoids electromyogram (EMG) sensors. The main goal is to balance the hand in the way, like grabbing, speed, and power, and provide a more robust and cost effective solution. All fingers have some mechanical consistency for picking up objects in a better way. A Flex sensor is attached to all fingers and it is interfaced with a computer using Arduino UNO microcontroller. The sensor aids the arm in three different directions: at first it senses whether an object is grasped or not. In the second step, it determines the coefficient of friction between the objects. Finally it grasps the object and stops. One of the primary issues of prosthetic hand is to have the capacity to satisfy every detail of torque, speed, and latency. In this research, we have developed a model of robotic hand with some modifications. The adaptability of grasping is compared with the degree of freedom (DOF) along with the quantity of fingers. We are controlling our hands via sensors based signal controlling system. The idea is to design a robotic hand, which has low cost, is easy to use, and is light in weight, which helps the amputees to use it with ease in their daily lives. The efficacy of the proposed control is verified and validated using simulations.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Haosen Yang ◽  
Guowu Wei ◽  
Lei Ren ◽  
Zhihui Qian ◽  
Kunyang Wang ◽  
...  

Abstract This paper presents the design, analysis, and development of an anthropomorphic robotic hand coined MCR-hand II. This hand takes the advantages of both the tendon-driven and linkage-driven systems, leading to a compact mechanical structure that aims to imitate the mobility of a human hand. Based on the investigation of the human hand anatomical structure and the related existing robotic hands, mechanical design of the MCR-hand II is presented. Then, using D-H convention, kinematics of this hand is formulated and illustrated with numerical simulations. Furthermore, fingertip force is deduced and analyzed, and mechatronic system integration and control strategy are addressed. Subsequently, a prototype of the proposed robotic hand is developed, integrated with low-level control system, and following which empirical study is carried out, which demonstrates that the proposed hand is capable of implementing the grasp and manipulation of most of the objects used in daily life. In addition, the three widely used tools, i.e., the Kapandji score test, Cutkosky taxonomy, and Kamakura taxonomy, are used to evaluate the performance of the hand, which evidences that the MCR-hand II possesses high dexterity and excellent grasping capability; object manipulation performance is also demonstrated. This paper hence presents the design and development of a type of novel tendon–linkage-integrated anthropomorphic robotic hand, laying broader background for the development of low-cost robotic hands for both industrial and prosthetic use.


2021 ◽  
Author(s):  
Md Omar Faruk Emon ◽  
Alex Russell ◽  
Gopal Nadkarni ◽  
Jae-Won Choi

Abstract Neuropathy is a nerve-damaging disease that causes those affected to lose feeling in their otherwise functional limbs. It can cause permanent numbing to the peripheral limb of a patient such as a hand or foot. In this report, we present a real-time visualization aid for grasp realization that can be used by patients experiencing numbness of the limb. This wearable electronic device was developed on an open-source microcontroller-based platform. This is a very simple and inexpensive solution. It is referred to as a NeuroGlove, and it provides patients with a visual light scale to allow them to understand the strength of the grasp they have on any object. A soft tactile sensor was additively manufactured by utilizing a multi-material direct-print system. The sensor consists of an ionic liquid-based pressure-sensitive membrane, stretchable electrodes, and insulation membranes. The printed flexible polymeric sensor was evaluated under varying forces. Next, the fabricated sensor was integrated with a microcontroller board where it was programmed to respond in a light scale according to the applied force on the sensor. Finally, the sensor-microcontroller system was installed on a glove to demonstrate a wearable visual aid for neuropathy patients. Additive manufacturing offers the ability for customization in a design, material, and geometry that could potentially lead to printing sensors on prosthetic or robotic hands.


2002 ◽  
Vol 14 (4) ◽  
pp. 323-323
Author(s):  
Takashi Tsubouchi ◽  
◽  
Keiji Nagatani ◽  

Since the dawning of the Robotics age, mobile robots have been important objectives of research and development. Working from such aspects as locomotion mechanisms, path and motion planning algorithms, navigation, map building and localization, and system architecture, researchers are working long and hard. Despite the fact that mobile robotics has a shorter history than conventional mechanical engineering, it has already accumulated a major, innovative, and rich body of R&D work. Rapid progress in modern scientific technology had advanced to where down-sized low-cost electronic devices, especially highperformance computers, can now be built into such mobile robots. Recent trends in ever higher performance and increased downsizing have enabled those working in the field of mobile robotics to make their models increasingly intelligent, versatile, and dexterous. The down-sized computer systems implemented in mobile robots must provide high-speed calculation for complicated motion planning, real-time image processing in image recognition, and sufficient memory for storing the huge amounts of data required for environment mapping. Given the swift progress in electronic devices, new trends are now emerging in mobile robotics. This special issue on ""Modern Trends in Mobile Robotics"" provides a diverse collection of distinguished papers on modern mobile robotics research. In the area of locomotion mechanisms, Huang et al. provide an informative paper on control of a 6-legged walking robot and Fujiwara et al. contribute progressive work on the development of a practical omnidirectional cart. Given the importance of vision systems enabling robots to survey their environments, Doi et al., Tang et al., and Shimizu present papers on cutting-edge vision-based navigation. On the crucial subject of how to equip robots with intelligence, Hashimoto et al. present the latest on sensor fault detection in dead-reckoning, Miura et al. detail the probabilistic modeling of obstacle motion during mobile robot navigation, Hada et al. treat long-term mobile robot activity, and Lee et al. explore mobile robot control in intelligent space. As guest editors, we are sure readers will find these articles both informative and interesting concerning current issues and new perspectives in modern trends in mobile robotics.


Author(s):  
Nandan Banerjee ◽  
Erik Amaral ◽  
Ben Axelrod ◽  
Steven Shamlian ◽  
Mark Moseley
Keyword(s):  

2014 ◽  
Vol 11 (02) ◽  
pp. 1450018 ◽  
Author(s):  
Dustyn P. Roberts ◽  
Jack Poon ◽  
Daniella Patrick ◽  
Joo H. Kim

While robotic hands have been developed for tasks such as manipulation and grasping, their potential as tools for evaluation of engineered products — particularly compliant structures that are not easily modeled — has not been broadly studied. In this research, a low-cost anthropometric robotic hand is introduced that is designed to characterize glove stiffness in a pressurized environment. The interaction with the compliant pressurized glove provides unique performance requirements and design constraints. The anthropometric robotic hand was designed to mimic the human hand in a configuration corresponding to the neutral position in zero gravity, including the transverse arch, longitudinal arch, and oblique flexion of the rays. The resulting robotic hand also allows for realistic donning and doffing of the prototype glove, its pressurization, and torque testing of individual joints. Solid modeling and 3D printing enabled the rapid design iterations necessary to work successfully with the compliant pressure garment. An instrumentation and data processing method was used to calculate the required actuator torque at each finger's knuckle joint. The performance of the robotic hand was experimentally demonstrated with a prototype spacesuit glove at different levels of pressure, followed by a statistical repeatability analysis. The reliable measurement method validated the pressure-induced stiffening. The resulting robotic design and testing method provide an objective and systematic way of evaluating the performance of compliant gloves.


2020 ◽  
Vol 17 (1) ◽  
pp. 172988142090515 ◽  
Author(s):  
Hanzhang Wang ◽  
Yisha Liu

In this article, we design a low-cost navigation system for a quadrotor working in unknown outdoor environments. To reduce the computing burden of the quadrotor, we build a separated system and transfer the computing resources from onboard side to ground station side. Both sides’ communication is guaranteed by 5G wireless networks. We utilize a stereo camera to acquire point clouds and build Octomap for the quadrotor’s navigation. Then, the trajectory is generated in two stages. In the first stage, a modified RRT*-CONNECT algorithm is adopted to generate a set of collision-free waypoints. In the second stage, a curve fitting algorithm is utilized to get a smooth piecewise Bezier trajectory. The advantage of the proposed method is to optimize the path into a safe, smooth, and dynamically feasible trajectory in real time. The modules of the state estimation, dense mapping, and motion planning are integrated into a DJI Matrice 100 quadrotor. Finally, simulation and experiments are both conducted to show the validity and practicality of our method.


Sign in / Sign up

Export Citation Format

Share Document