scholarly journals The Statistical Physics of Learning Revisited: Typical Learning Curves in Model Scenarios

Author(s):  
Michael Biehl

AbstractThe exchange of ideas between computer science and statistical physics has advanced the understanding of machine learning and inference significantly. This interdisciplinary approach is currently regaining momentum due to the revived interest in neural networks and deep learning. Methods borrowed from statistical mechanics complement other approaches to the theory of computational and statistical learning. In this brief review, we outline and illustrate some of the basic concepts. We exemplify the role of the statistical physics approach in terms of a particularly important contribution: the computation of typical learning curves in student teacher scenarios of supervised learning. Two, by now classical examples from the literature illustrate the approach: the learning of a linearly separable rule by a perceptron with continuous and with discrete weights, respectively. We address these prototypical problems in terms of the simplifying limit of stochastic training at high formal temperature and obtain the corresponding learning curves.

2021 ◽  
Vol 12 ◽  
pp. 878-901
Author(s):  
Ido Azuri ◽  
Irit Rosenhek-Goldian ◽  
Neta Regev-Rudzki ◽  
Georg Fantner ◽  
Sidney R Cohen

Progress in computing capabilities has enhanced science in many ways. In recent years, various branches of machine learning have been the key facilitators in forging new paths, ranging from categorizing big data to instrumental control, from materials design through image analysis. Deep learning has the ability to identify abstract characteristics embedded within a data set, subsequently using that association to categorize, identify, and isolate subsets of the data. Scanning probe microscopy measures multimodal surface properties, combining morphology with electronic, mechanical, and other characteristics. In this review, we focus on a subset of deep learning algorithms, that is, convolutional neural networks, and how it is transforming the acquisition and analysis of scanning probe data.


Author(s):  
JZT Sim ◽  
QW Fong ◽  
WM Huang ◽  
CH Tan

With the advent of artificial intelligence (AI), machines are increasingly being used to complete complicated tasks, yielding remarkable results. Machine learning (ML) is the most relevant subset of AI in medicine, which will soon become an integral part of our everyday practice. Therefore, physicians should acquaint themselves with ML and AI, and their role as an enabler rather than a competitor. Herein, we introduce basic concepts and terms used in AI and ML, and aim to demystify commonly used AI/ML algorithms such as learning methods including neural networks/deep learning, decision tree and application domain in computer vision and natural language processing through specific examples. We discuss how machines are already being used to augment the physician’s decision-making process, and postulate the potential impact of ML on medical practice and medical research based on its current capabilities and known limitations. Moreover, we discuss the feasibility of full machine autonomy in medicine.


Author(s):  
Krishna Kumar Joshi ◽  
Neelam Joshi ◽  
Ravi Ray Chaudhari

Nowadays, Artificial intelligence is an important part in everyone's life. It can be derived in two categories named as Machine learning and deep learning. Machine learning is the emerging field of the current era. With the help of the machine learning, we can develop the computers in such a way so that they can learn themselves. There are various types of leaning algorithms used for machine learning. With the help of these algorithms, machines can learn various things and they can behave almost like the human beings. Nowadays, the role of the machine is not limited in some defined fields only; it is playing an important role in almost every field such as education, entertainment, medical diagnosis etc. In this research paper, the basics about machine learning is discussed we have discussed about various learning techniques such as supervised learning, unsupervised learning and reinforcement learning in detail. A small portion is also used to cover some basics about the Convolutional Neural Networks (CNN). Some information about the various languages and APIs, designed and mostly used for Machine Learning and its applications are also provided in this paper.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Abdulkadir Canatar ◽  
Blake Bordelon ◽  
Cengiz Pehlevan

AbstractA theoretical understanding of generalization remains an open problem for many machine learning models, including deep networks where overparameterization leads to better performance, contradicting the conventional wisdom from classical statistics. Here, we investigate generalization error for kernel regression, which, besides being a popular machine learning method, also describes certain infinitely overparameterized neural networks. We use techniques from statistical mechanics to derive an analytical expression for generalization error applicable to any kernel and data distribution. We present applications of our theory to real and synthetic datasets, and for many kernels including those that arise from training deep networks in the infinite-width limit. We elucidate an inductive bias of kernel regression to explain data with simple functions, characterize whether a kernel is compatible with a learning task, and show that more data may impair generalization when noisy or not expressible by the kernel, leading to non-monotonic learning curves with possibly many peaks.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 39
Author(s):  
Carlos Lassance ◽  
Vincent Gripon ◽  
Antonio Ortega

Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs are associated with outputs trained to optimize an objective function. Because of their compositional nature, DL architectures naturally exhibit several intermediate representations of the inputs, which belong to so-called latent spaces. When treated individually, these intermediate representations are most of the time unconstrained during the learning process, as it is unclear which properties should be favored. However, when processing a batch of inputs concurrently, the corresponding set of intermediate representations exhibit relations (what we call a geometry) on which desired properties can be sought. In this work, we show that it is possible to introduce constraints on these latent geometries to address various problems. In more detail, we propose to represent geometries by constructing similarity graphs from the intermediate representations obtained when processing a batch of inputs. By constraining these Latent Geometry Graphs (LGGs), we address the three following problems: (i) reproducing the behavior of a teacher architecture is achieved by mimicking its geometry, (ii) designing efficient embeddings for classification is achieved by targeting specific geometries, and (iii) robustness to deviations on inputs is achieved via enforcing smooth variation of geometry between consecutive latent spaces. Using standard vision benchmarks, we demonstrate the ability of the proposed geometry-based methods in solving the considered problems.


2021 ◽  
Vol 20 ◽  
pp. 153303382110163
Author(s):  
Danju Huang ◽  
Han Bai ◽  
Li Wang ◽  
Yu Hou ◽  
Lan Li ◽  
...  

With the massive use of computers, the growth and explosion of data has greatly promoted the development of artificial intelligence (AI). The rise of deep learning (DL) algorithms, such as convolutional neural networks (CNN), has provided radiation oncologists with many promising tools that can simplify the complex radiotherapy process in the clinical work of radiation oncology, improve the accuracy and objectivity of diagnosis, and reduce the workload, thus enabling clinicians to spend more time on advanced decision-making tasks. As the development of DL gets closer to clinical practice, radiation oncologists will need to be more familiar with its principles to properly evaluate and use this powerful tool. In this paper, we explain the development and basic concepts of AI and discuss its application in radiation oncology based on different task categories of DL algorithms. This work clarifies the possibility of further development of DL in radiation oncology.


2021 ◽  
pp. 102685
Author(s):  
Parjanay Sharma ◽  
Siddhant Jain ◽  
Shashank Gupta ◽  
Vinay Chamola

2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lara Lloret Iglesias ◽  
Pablo Sanz Bellón ◽  
Amaia Pérez del Barrio ◽  
Pablo Menéndez Fernández-Miranda ◽  
David Rodríguez González ◽  
...  

AbstractDeep learning is nowadays at the forefront of artificial intelligence. More precisely, the use of convolutional neural networks has drastically improved the learning capabilities of computer vision applications, being able to directly consider raw data without any prior feature extraction. Advanced methods in the machine learning field, such as adaptive momentum algorithms or dropout regularization, have dramatically improved the convolutional neural networks predicting ability, outperforming that of conventional fully connected neural networks. This work summarizes, in an intended didactic way, the main aspects of these cutting-edge techniques from a medical imaging perspective.


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


Sign in / Sign up

Export Citation Format

Share Document