scholarly journals Monitoring Human-Wildlife Interactions in National Parks with Crowdsourced Data and Deep Learning

Author(s):  
Bing Pan ◽  
Virinchi Savanapelli ◽  
Abhishek Shukla ◽  
Junjun Yin

AbstractThis short paper summarizes the first research stage for applying deep learning techniques to capture human-wildlife interactions in national parks from crowd-sourced data. The results from objection detection, image captioning, and distance calculation are reported. We were able to categorize animal types, summarize visitor behaviors in the pictures, and calculate distances between visitors and animals with different levels of accuracy. Future development will focus on getting more training data and field experiments to collect ground truth on animal types and distances to animals. More in-depth manual coding is needed to categorize visitor behavior into acceptable and unacceptable ones.

2018 ◽  
Vol 27 (01) ◽  
pp. 098-109 ◽  
Author(s):  
Nagarajan Ganapathy ◽  
Ramakrishnan Swaminathan ◽  
Thomas Deserno

Objectives: Deep learning models such as convolutional neural networks (CNNs) have been applied successfully to medical imaging, but biomedical signal analysis has yet to fully benefit from this novel approach. Our survey aims at (i) reviewing deep learning techniques for biosignal analysis in computer- aided diagnosis; and (ii) deriving a taxonomy for organizing the growing number of applications in the field. Methods: A comprehensive literature research was performed using PubMed, Scopus, and ACM. Deep learning models were classified with respect to the (i) origin, (ii) dimension, and (iii) type of the biosignal as input to the deep learning model; (iv) the goal of the application; (v) the size and (vi) type of ground truth data; (vii) the type and (viii) schedule of learning the network; and (ix) the topology of the model. Results: Between January 2010 and December 2017, a total 71 papers were published on the topic. The majority (n = 36) of papers are on electrocariography (ECG) signals. Most applications (n = 25) aim at detection of patterns, while only a few (n = 6) at predection of events. Out of 36 ECG-based works, many (n = 17) relate to multi-lead ECG. Other biosignals that have been identified in the survey are electromyography, phonocardiography, photoplethysmography, electrooculography, continuous glucose monitoring, acoustic respiratory signal, blood pressure, and electrodermal activity signal, while ballistocardiography or seismocardiography have yet to be analyzed using deep learning techniques. In supervised and unsupervised applications, CNNs and restricted Boltzmann machines are the most and least frequently used, (n = 34) and (n = 15), respectively. Conclusion: Our key-code classification of relevant papers was used to cluster the approaches that have been published to date and demonstrated a large variability of research with respect to data, application, and network topology. Future research is expected to focus on the standardization of deep learning architectures and on the optimization of the network parameters to increase performance and robustness. Furthermore, application-driven approaches and updated training data from mobile recordings are needed.


2018 ◽  
Author(s):  
Uri Shaham

AbstractBiological measurements often contain systematic errors, also known as “batch effects”, which may invalidate downstream analysis when not handled correctly. The problem of removing batch effects is of major importance in the biological community. Despite recent advances in this direction via deep learning techniques, most current methods may not fully preserve the true biological patterns the data contains. In this work we propose a deep learning approach for batch effect removal. The crux of our approach is learning a batch-free encoding of the data, representing its intrinsic biological properties, but not batch effects. In addition, we also encode the systematic factors through a decoding mechanism and require accurate reconstruction of the data. Altogether, this allows us to fully preserve the true biological patterns represented in the data. Experimental results are reported on data obtained from two high throughput technologies, mass cytometry and single-cell RNA-seq. Beyond good performance on training data, we also observe that our system performs well on test data obtained from new patients, which was not available at training time. Our method is easy to handle, a publicly available code can be found at https://github.com/ushaham/BatchEffectRemoval2018.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Dennis Segebarth ◽  
Matthias Griebel ◽  
Nikolai Stein ◽  
Cora R von Collenberg ◽  
Corinna Martin ◽  
...  

Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.


Author(s):  
Vu Tuan Hai ◽  
Dang Thanh Vu ◽  
Huynh Ho Thi Mong Trinh ◽  
Pham The Bao

Recent advances in deep learning models have shown promising potential in object removal, which is the task of replacing undesired objects with appropriate pixel values using known context. Object removal-based deep learning can commonly be solved by modeling it as the Img2Img (image to image) translation or Inpainting. Instead of dealing with a large context, this paper aims at a specific application of object removal, that is, erasing braces trace out of an image having teeth with braces (called braces2teeth problem). We solved the problem by three methods corresponding to different datasets. Firstly, we use the CycleGAN model to deal with the problem that paired training data is not available. In the second case, we try to create pseudo-paired data to train the Pix2Pix model. In the last case, we utilize GraphCut combining generative inpainting model to build a user-interactive tool that can improve the result in case the user is not satisfied with previous results. To our best knowledge, this study is one of the first attempts to take the braces2teeth problem into account by using deep learning techniques and it can be applied in various fields, from health care to entertainment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sofia B. Dias ◽  
Sofia J. Hadjileontiadou ◽  
José Diniz ◽  
Leontios J. Hadjileontiadis

AbstractCoronavirus (Covid-19) pandemic has imposed a complete shut-down of face-to-face teaching to universities and schools, forcing a crash course for online learning plans and technology for students and faculty. In the midst of this unprecedented crisis, video conferencing platforms (e.g., Zoom, WebEx, MS Teams) and learning management systems (LMSs), like Moodle, Blackboard and Google Classroom, are being adopted and heavily used as online learning environments (OLEs). However, as such media solely provide the platform for e-interaction, effective methods that can be used to predict the learner’s behavior in the OLEs, which should be available as supportive tools to educators and metacognitive triggers to learners. Here we show, for the first time, that Deep Learning techniques can be used to handle LMS users’ interaction data and form a novel predictive model, namely DeepLMS, that can forecast the quality of interaction (QoI) with LMS. Using Long Short-Term Memory (LSTM) networks, DeepLMS results in average testing Root Mean Square Error (RMSE) $$<0.009$$ < 0.009 , and average correlation coefficient between ground truth and predicted QoI values $$r\ge 0.97$$ r ≥ 0.97 $$(p<0.05)$$ ( p < 0.05 ) , when tested on QoI data from one database pre- and two ones during-Covid-19 pandemic. DeepLMS personalized QoI forecasting scaffolds user’s online learning engagement and provides educators with an evaluation path, additionally to the content-related assessment, enriching the overall view on the learners’ motivation and participation in the learning process.


2018 ◽  
Vol 7 (3.27) ◽  
pp. 258 ◽  
Author(s):  
Yecheng Yao ◽  
Jungho Yi ◽  
Shengjun Zhai ◽  
Yuwen Lin ◽  
Taekseung Kim ◽  
...  

The decentralization of cryptocurrencies has greatly reduced the level of central control over them, impacting international relations and trade. Further, wide fluctuations in cryptocurrency price indicate an urgent need for an accurate way to forecast this price. This paper proposes a novel method to predict cryptocurrency price by considering various factors such as market cap, volume, circulating supply, and maximum supply based on deep learning techniques such as the recurrent neural network (RNN) and the long short-term memory (LSTM),which are effective learning models for training data, with the LSTM being better at recognizing longer-term associations. The proposed approach is implemented in Python and validated for benchmark datasets. The results verify the applicability of the proposed approach for the accurate prediction of cryptocurrency price.


2019 ◽  
Vol 38 (11) ◽  
pp. 872a1-872a9 ◽  
Author(s):  
Mauricio Araya-Polo ◽  
Stuart Farris ◽  
Manuel Florez

Exploration seismic data are heavily manipulated before human interpreters are able to extract meaningful information regarding subsurface structures. This manipulation adds modeling and human biases and is limited by methodological shortcomings. Alternatively, using seismic data directly is becoming possible thanks to deep learning (DL) techniques. A DL-based workflow is introduced that uses analog velocity models and realistic raw seismic waveforms as input and produces subsurface velocity models as output. When insufficient data are used for training, DL algorithms tend to overfit or fail. Gathering large amounts of labeled and standardized seismic data sets is not straightforward. This shortage of quality data is addressed by building a generative adversarial network (GAN) to augment the original training data set, which is then used by DL-driven seismic tomography as input. The DL tomographic operator predicts velocity models with high statistical and structural accuracy after being trained with GAN-generated velocity models. Beyond the field of exploration geophysics, the use of machine learning in earth science is challenged by the lack of labeled data or properly interpreted ground truth, since we seldom know what truly exists beneath the earth's surface. The unsupervised approach (using GANs to generate labeled data)illustrates a way to mitigate this problem and opens geology, geophysics, and planetary sciences to more DL applications.


2020 ◽  
Author(s):  
Ghazi Abdalla ◽  
Fatih Özyurt

Abstract In the modern era, Internet usage has become a basic necessity in the lives of people. Nowadays, people can perform online shopping and check the customer’s views about products that purchased online. Social networking services enable users to post opinions on public platforms. Analyzing people’s opinions helps corporations to improve the quality of products and provide better customer service. However, analyzing this content manually is a daunting task. Therefore, we implemented sentiment analysis to make the process automatically. The entire process includes data collection, pre-processing, word embedding, sentiment detection and classification using deep learning techniques. Twitter was chosen as the source of data collection and tweets collected automatically by using Tweepy. In this paper, three deep learning techniques were implemented, which are CNN, Bi-LSTM and CNN-Bi-LSTM. Each of the models trained on three datasets consists of 50K, 100K and 200K tweets. The experimental result revealed that, with the increasing amount of training data size, the performance of the models improved, especially the performance of the Bi-LSTM model. When the model trained on the 200K dataset, it achieved about 3% higher accuracy than the 100K dataset and achieved about 7% higher accuracy than the 50K dataset. Finally, the Bi-LSTM model scored the highest performance in all metrics and achieved an accuracy of 95.35%.


2020 ◽  
Vol 36 (12) ◽  
pp. 3863-3870
Author(s):  
Mischa Schwendy ◽  
Ronald E Unger ◽  
Sapun H Parekh

Abstract Motivation Deep learning use for quantitative image analysis is exponentially increasing. However, training accurate, widely deployable deep learning algorithms requires a plethora of annotated (ground truth) data. Image collections must contain not only thousands of images to provide sufficient example objects (i.e. cells), but also contain an adequate degree of image heterogeneity. Results We present a new dataset, EVICAN—Expert visual cell annotation, comprising partially annotated grayscale images of 30 different cell lines from multiple microscopes, contrast mechanisms and magnifications that is readily usable as training data for computer vision applications. With 4600 images and ∼26 000 segmented cells, our collection offers an unparalleled heterogeneous training dataset for cell biology deep learning application development. Availability and implementation The dataset is freely available (https://edmond.mpdl.mpg.de/imeji/collection/l45s16atmi6Aa4sI?q=). Using a Mask R-CNN implementation, we demonstrate automated segmentation of cells and nuclei from brightfield images with a mean average precision of 61.6 % at a Jaccard Index above 0.5.


Author(s):  
Priti P. Rege ◽  
Shaheera Akhter

Text separation in document image analysis is an important preprocessing step before executing an optical character recognition (OCR) task. It is necessary to improve the accuracy of an OCR system. Traditionally, for separating text from a document, different feature extraction processes have been used that require handcrafting of the features. However, deep learning-based methods are excellent feature extractors that learn features from the training data automatically. Deep learning gives state-of-the-art results on various computer vision, image classification, segmentation, image captioning, object detection, and recognition tasks. This chapter compares various traditional as well as deep-learning techniques and uses a semantic segmentation method for separating text from Devanagari document images using U-Net and ResU-Net models. These models are further fine-tuned for transfer learning to get more precise results. The final results show that deep learning methods give more accurate results compared with conventional methods of image processing for Devanagari text extraction.


Sign in / Sign up

Export Citation Format

Share Document