Sentiment Analysis of Fast Food Companies With Deep Learning Models

2020 ◽  
Author(s):  
Ghazi Abdalla ◽  
Fatih Özyurt

Abstract In the modern era, Internet usage has become a basic necessity in the lives of people. Nowadays, people can perform online shopping and check the customer’s views about products that purchased online. Social networking services enable users to post opinions on public platforms. Analyzing people’s opinions helps corporations to improve the quality of products and provide better customer service. However, analyzing this content manually is a daunting task. Therefore, we implemented sentiment analysis to make the process automatically. The entire process includes data collection, pre-processing, word embedding, sentiment detection and classification using deep learning techniques. Twitter was chosen as the source of data collection and tweets collected automatically by using Tweepy. In this paper, three deep learning techniques were implemented, which are CNN, Bi-LSTM and CNN-Bi-LSTM. Each of the models trained on three datasets consists of 50K, 100K and 200K tweets. The experimental result revealed that, with the increasing amount of training data size, the performance of the models improved, especially the performance of the Bi-LSTM model. When the model trained on the 200K dataset, it achieved about 3% higher accuracy than the 100K dataset and achieved about 7% higher accuracy than the 50K dataset. Finally, the Bi-LSTM model scored the highest performance in all metrics and achieved an accuracy of 95.35%.

The whole world is changing rapidly with current innovations, using the Internet, has become a fundamental requirement in people's lives. Nowadays, a massive amount of data made by social networks based on daily user activities. Gathering and analyzing people's opinions are crucial for business applications when they are extracted and analyzed accurately. This data helps the corporations to improve product quality and provide better customer service. But manually analyzing opinions is an impossible task because the content is unorganized. For this reason, we applied sentiment analysis that is the process of extracting and analyzing the unorganized data automatically. The primary steps to perform sentiment analysis include data collection, pre-processing, word embedding, sentiment detection, and classification using deep learning techniques. This work focused on the binary classification of sentiments for three product reviews of fast-food restaurants. Twitter is chosen as the source of data to perform analysis. All tweets were collected automatically by using Tweepy. The experimented dataset divided into half of the positive and half of the negative tweets. In this paper, three deep learning techniques implemented, which are Convolutional Neural Network (CNN), Bi-Directional Long Short-Term Memory (Bi-LSTM), and CNN-Bi-LSTM, The performance of each of them measured and compared in terms of accuracy, precision, recall, and F1 score Finally, Bi-LSTM scored the highest performance in all metrics compared to the two other techniques.


2021 ◽  
Vol 1 (1) ◽  
pp. 12-16
Author(s):  
M. Pek ◽  
M. Turan

By current improvements of web technology nowadays, usage of social media has increased. Twitter is a web site where millions share their opinions. Political parties, firms and other establishments has been examining data at these social media sites to learn person’s opinions about themselves. Reporting the sharing of millions of persons instantly is done more easily by using machine and deep learning techniques. In this work, sentiment analysis is done by the Convolutional Neural Network which has wide-spread usage in deep learning. Besides other known works, improvements in feature selection have been applied in order to meet higher success rate. Model has been trained by the different data sets and tested in other data sets. The model has reached to 97% success rate by the training data. 90% and 89% success rates have been achieved on the tests applied to other data sets.


2018 ◽  
Vol 34 (3) ◽  
pp. 569-581 ◽  
Author(s):  
Sujata Rani ◽  
Parteek Kumar

Abstract In this article, an innovative approach to perform the sentiment analysis (SA) has been presented. The proposed system handles the issues of Romanized or abbreviated text and spelling variations in the text to perform the sentiment analysis. The training data set of 3,000 movie reviews and tweets has been manually labeled by native speakers of Hindi in three classes, i.e. positive, negative, and neutral. The system uses WEKA (Waikato Environment for Knowledge Analysis) tool to convert these string data into numerical matrices and applies three machine learning techniques, i.e. Naive Bayes (NB), J48, and support vector machine (SVM). The proposed system has been tested on 100 movie reviews and tweets, and it has been observed that SVM has performed best in comparison to other classifiers, and it has an accuracy of 68% for movie reviews and 82% in case of tweets. The results of the proposed system are very promising and can be used in emerging applications like SA of product reviews and social media analysis. Additionally, the proposed system can be used in other cultural/social benefits like predicting/fighting human riots.


2019 ◽  
pp. 127-147
Author(s):  
Koyel Chakraborty ◽  
Siddhartha Bhattacharyya ◽  
Rajib Bag ◽  
Aboul Alla Hassanien

Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2018 ◽  
Author(s):  
Uri Shaham

AbstractBiological measurements often contain systematic errors, also known as “batch effects”, which may invalidate downstream analysis when not handled correctly. The problem of removing batch effects is of major importance in the biological community. Despite recent advances in this direction via deep learning techniques, most current methods may not fully preserve the true biological patterns the data contains. In this work we propose a deep learning approach for batch effect removal. The crux of our approach is learning a batch-free encoding of the data, representing its intrinsic biological properties, but not batch effects. In addition, we also encode the systematic factors through a decoding mechanism and require accurate reconstruction of the data. Altogether, this allows us to fully preserve the true biological patterns represented in the data. Experimental results are reported on data obtained from two high throughput technologies, mass cytometry and single-cell RNA-seq. Beyond good performance on training data, we also observe that our system performs well on test data obtained from new patients, which was not available at training time. Our method is easy to handle, a publicly available code can be found at https://github.com/ushaham/BatchEffectRemoval2018.


2021 ◽  
Vol 9 (2) ◽  
pp. 1051-1052
Author(s):  
K. Kavitha, Et. al.

Sentiments is the term of opinion or views about any topic expressed by the people through a source of communication. Nowadays social media is an effective platform for people to communicate and it generates huge amount of unstructured details every day. It is essential for any business organization in the current era to process and analyse the sentiments by using machine learning and Natural Language Processing (NLP) strategies. Even though in recent times the deep learning strategies are becoming more familiar due to higher capabilities of performance. This paper represents an empirical study of an application of deep learning techniques in Sentiment Analysis (SA) for sarcastic messages and their increasing scope in real time. Taxonomy of the sentiment analysis in recent times and their key terms are also been highlighted in the manuscript. The survey concludes the recent datasets considered, their key contributions and the performance of deep learning model applied with its primary purpose like sarcasm detection in order to describe the efficiency of deep learning frameworks in the domain of sentimental analysis.


Author(s):  
Vu Tuan Hai ◽  
Dang Thanh Vu ◽  
Huynh Ho Thi Mong Trinh ◽  
Pham The Bao

Recent advances in deep learning models have shown promising potential in object removal, which is the task of replacing undesired objects with appropriate pixel values using known context. Object removal-based deep learning can commonly be solved by modeling it as the Img2Img (image to image) translation or Inpainting. Instead of dealing with a large context, this paper aims at a specific application of object removal, that is, erasing braces trace out of an image having teeth with braces (called braces2teeth problem). We solved the problem by three methods corresponding to different datasets. Firstly, we use the CycleGAN model to deal with the problem that paired training data is not available. In the second case, we try to create pseudo-paired data to train the Pix2Pix model. In the last case, we utilize GraphCut combining generative inpainting model to build a user-interactive tool that can improve the result in case the user is not satisfied with previous results. To our best knowledge, this study is one of the first attempts to take the braces2teeth problem into account by using deep learning techniques and it can be applied in various fields, from health care to entertainment.


Sign in / Sign up

Export Citation Format

Share Document