Application I: Solder Joint Reflow Process

Author(s):  
Mohd N. Tamin ◽  
Norhashimah M. Shaffiar
Keyword(s):  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianing Wang ◽  
Jieshi Chen ◽  
Zhiyuan Zhang ◽  
Peilei Zhang ◽  
Zhishui Yu ◽  
...  

Purpose The purpose of this article is the effect of doping minor Ni on the microstructure evolution of a Sn-xNi (x = 0, 0.05 and 0.1 wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment. Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of interfacial layer was different due to the different mechanism of element diffusion of the two substrates. The PC Ni substrate mainly provided Ni atoms through grain boundary diffusion. The Ni3Sn4 phase of the Sn0.05Ni/PC Ni joint was finer, and the diffusion flux of Sn and Ni elements increased, so the Ni3Sn4 layer of this joint was the thickest. The SC Ni substrate mainly provided Ni atoms through the lattice diffusion. The Sn0.1Ni/SC Ni joint increases the number of Ni atoms at the interface due to the doping of 0.1Ni (wt.%) elements, so the joint had the thickest NiSn4 layer. Design/methodology/approach The effects of doping minor Ni on the microstructure evolution of an Sn-xNi (x = 0, 0.05 and 0.1 Wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment was investigated in this study. Findings Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of the interfacial layer was different due to the different mechanisms of element diffusion of the two substrates. Originality/value In this study, the effect of doping Ni on the growth and formation mechanism of IMCs of the Sn-xNi/Ni (single-crystal) solder joints (x = 0, 0.05 and 0.1 Wt.%) was investigated.


Author(s):  
Kanji Takagi ◽  
Qiang Yu ◽  
Tadahiro Shibutani ◽  
Hiroki Miyauchi

The miniaturization and high reliability for automotive electronic components has been strongly requested. Generally, electronic component and printed wiring board are connected using solder joint. The reliability of solder joint has widely dispersion. For the dispersion reduction of solder joint reliability, not only design factors but manufacturing factors should be optimized. The evaluation of manufacturing factors for solder joint reliability was very difficult by experimental evaluation alone. Therefore, the reflow process simulation was established. The simulation was reenacted soldering process on chip component, which was the most severe reliability in automotive electronic components. The novelty of simulation was the coupled analysis of flow and rigid for simulating self-alignment of chip component. In this simulation, contact angle and surface tension was very important factor. So, these characteristics were measured based on Spread test and Wetting balance tests using the specimens. In the result, the solder joint shape of analysis was agree with the one of specimens using the measured contact angle and surface tension. Next, the effect of manufacturing process dispersion for solder joint shape was evaluated. The factors were mount offset and length unbalance of electrodes on chip component. As a result, the mount offset was not affected solder joint shape of chip component until a certain level. Also, the unbalance of electrode of chip component was not almost affected for solder joint shape of chip component because a part was moved to the center of part by surface tension of solder joint. Finally, the relation between the estimated solder joint shape and fatigue life of solder joints is evaluated using crack propagation analysis based on Manson-Coffin’s law and Miner’s rule. When the value of mount offset was large, the crack propagation mode was changed and the fatigue life of solder joint was decreased. As mentioned above, it was able to evaluate the relation between manufacturing factors and solder joint reliability. Accordingly, this simulation was very useful for consideration on the miniaturization, high reliability and appropriate margin for design of electronic components.


1999 ◽  
Vol 124 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Wen-Hwa Chen ◽  
Kuo-Ning Chiang ◽  
Shu-Ru Lin

This study presents an efficient method to accurately predict solder joint geometry after a reflow process. The proposed method can be utilized for Solder Mask Defined (SMD), Non-Solder Mask Defined (NSMD), or C4 type solder joints. The reflow process involves several design factors capable of influencing the final shape of the molten solder joint, such as solder joint volume, restoring force, surface tension, contact angle, pad thickness, and pad size. These factors are all considered in the calculations. The computed results are compared with those using the Surface Evolver program and also with available numerical/experimental results. Their excellent agreement shows that the method developed herein can be practically applied to predict the reflow shape of SMD/NSMD solder joints. The difference between SMD and NSMD is also examined in detail. Results in this study provide designers with a fundamental guideline for accurately predicting the liquid formation of solder joints during the reflow process.


1998 ◽  
Vol 120 (2) ◽  
pp. 141-144 ◽  
Author(s):  
X. Wu ◽  
X. Dou ◽  
C.-P. Yeh ◽  
K. Waytt

The failure of electrical devices associated with solder joints has become one of the most critical reliability issues for surface-mounted devices. Solder joint reliability performance has been found to be highly dependent on the solder joint configuration, which, in turn, is governed by bond pad size, alloy material, and leadframe structure, as well as solder reflow characteristics. To investigate tombstone effects causing solder joint failure during leadless component reflow process, this work has focused on (1) developing a numerical model for the simulations of the solder joint formation during the reflow process, and (2) determining possibility that a tombstone effect for the leadless component may occur by analyzing the force and torque in the problem. Using this methodology, the tombstone effect associated with different pad geometry configurations and solder paste amount has been analyzed through the application of the public domain software tool Surface Evolver. Simulations show that the tombstoning is very sensitive to pad/component geometry design, solder surface tension, solder paste volume, wetting area, and wetting angle. This model simulation can be used to determine optimal solder paste volume, pad geometry configurations, and solder material for avoiding tombstone effects.


1990 ◽  
Vol 112 (3) ◽  
pp. 210-218 ◽  
Author(s):  
S. M. Heinrich ◽  
A. F. Elkouh ◽  
N. J. Nigro ◽  
Ping S. Lee

An analytical model of solder joint formation during a surface mount reflow process is developed in the present paper, and the solution is obtained in an explicit integral form. For two limiting cases—infinitesimal and infinite solder areas—the solution is expressed in closed form. Numerical results illustrate the influence of the process parameters (surface tension, density, and cross-sectional area of the molten solder, and the contact angles between the solder andpretinning) on joint shape and overall fillet dimensions. Comparisons between theoretical predictions and laboratory data show excellent agreement.


2017 ◽  
Vol 29 (3) ◽  
pp. 144-150 ◽  
Author(s):  
Yeqing Tao ◽  
Dongyan Ding ◽  
Ting Li ◽  
Jason Guo ◽  
Guoliang Fan

Purpose This paper aims to study the influence of reflow atmosphere and placement accuracy on the solderability of 01005 capacitor/SAC305 solder joints. Design/methodology/approach The 01005 capacitors were mounted on OSP-coated pads, and the samples were fabricated in four different atmospheres, i.e. 200 ppm O2/N2, 1,000 ppm O2/N2, 3,000 ppm O2/N2 and air. After the reflow process, visual inspection and X-ray detection were carried out to examine the solder joint shapes and possible defects. Some of the samples fabricated in different conditions were cross-sectioned and the solder joint microstructures were analyzed. On the other hand, besides placing the components on their normal pad positions, a 50 per cent offset of the x-axis (long axis) or y-axis (short axis) was introduced into the chip mounter programs to evaluate the 01005 capacitor’s assembly sensitivity to placement accuracy. The process-induced defects were investigated. Findings Experimental results indicated that an N2-based protective atmosphere was necessary for 01005 type assembly, as it could obviously improve the 01005 solder joint quality, compared with the air condition. The protective atmosphere had little effect on the appearance, quality and microstructure of solder joints when the oxygen concentration was below 3,000 ppm. But a very low oxygen concentration could increase the risk of tombstoning defects for the assembly process. The N2-based protective atmosphere containing 1,000-2000 ppm O2 was acceptable and appropriate for the assembly of tiny components. Originality/value The results of this work provide a set of reflow process parameters and recommendations for 01005 size component assembly in manufacturing.


Sign in / Sign up

Export Citation Format

Share Document