Reflow of tiny 01005 capacitor/SAC305 solder joints in protective atmosphere

2017 ◽  
Vol 29 (3) ◽  
pp. 144-150 ◽  
Author(s):  
Yeqing Tao ◽  
Dongyan Ding ◽  
Ting Li ◽  
Jason Guo ◽  
Guoliang Fan

Purpose This paper aims to study the influence of reflow atmosphere and placement accuracy on the solderability of 01005 capacitor/SAC305 solder joints. Design/methodology/approach The 01005 capacitors were mounted on OSP-coated pads, and the samples were fabricated in four different atmospheres, i.e. 200 ppm O2/N2, 1,000 ppm O2/N2, 3,000 ppm O2/N2 and air. After the reflow process, visual inspection and X-ray detection were carried out to examine the solder joint shapes and possible defects. Some of the samples fabricated in different conditions were cross-sectioned and the solder joint microstructures were analyzed. On the other hand, besides placing the components on their normal pad positions, a 50 per cent offset of the x-axis (long axis) or y-axis (short axis) was introduced into the chip mounter programs to evaluate the 01005 capacitor’s assembly sensitivity to placement accuracy. The process-induced defects were investigated. Findings Experimental results indicated that an N2-based protective atmosphere was necessary for 01005 type assembly, as it could obviously improve the 01005 solder joint quality, compared with the air condition. The protective atmosphere had little effect on the appearance, quality and microstructure of solder joints when the oxygen concentration was below 3,000 ppm. But a very low oxygen concentration could increase the risk of tombstoning defects for the assembly process. The N2-based protective atmosphere containing 1,000-2000 ppm O2 was acceptable and appropriate for the assembly of tiny components. Originality/value The results of this work provide a set of reflow process parameters and recommendations for 01005 size component assembly in manufacturing.

2020 ◽  
Vol 33 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Guang Chen ◽  
Xinzhan Cui ◽  
Yaofeng Wu ◽  
Wei Li ◽  
Fengshun Wu

Purpose The purpose of this paper is to investigate the effect of fullerene (FNS) reinforcements on the microstructure and mechanical properties of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder joints under isothermal ageing and electrical-migration (EM) stressing. Design/methodology/approach In this paper, SAC305 solder alloy doped with 0.1 Wt.% FNS was prepared via the powder metallurgy method. A sandwich-like sample and a U-shaped sample were designed and prepared to conduct an isothermal ageing test and an EM test. The isothermal ageing test was implemented under vacuum atmosphere at 150°C, whereas the EM experiment was carried out with a current density of 1.5 × 104 A/cm2. The microstructural and mechanical evolutions of both plain and composite solder joints after thermal ageing and EM stressing were comparatively studied. Findings A growth of Ag3Sn intermetallic compounds (IMCs) in solder matrix and Cu-Sn interfacial IMCs in composite solder joints was notably suppressed under isothermal ageing condition, whereas the hardness and shear strength of composite solder joints significantly outperformed those of non-reinforced solder joints throughout the ageing period. The EM experimental results showed that for the SAC305 solder, the interfacial IMCs formulated a protrusion at the anode after 360 h of EM stressing, whereas the surface of the composite solder joint was relatively smooth. During the stressing period, the interfacial IMC on the anode side of the plain SAC305 solder showed a continuous increasing trend, whereas the IMC at the cathode presented a decreasing trend for its thickness as the stressing time increased; after 360 h of stressing, some cracks and voids had formed on the cathode side. For the SAC305/FNS composite solder, a continuous increase in the thickness of the interfacial IMC was found on both the anode and cathode sides; the growth rate of the interfacial IMC at the anode was higher than that at the cathode. The nanoindentation results showed that the hardness of the SAC305 solder joint presented a gradient distribution after EM stressing, whereas the hardness data showed a relatively homogeneous distribution in the SAC305/FNS solder joint. Originality/value The experimental results showed that the FNS reinforcement could effectively mitigate the failure risk in solder joints under isothermal ageing and high-current stressing. Specifically, the FNS particles in solder joints can work as a barrier to suppress the diffusion and migration of Sn and Cu atoms. In addition, the nanoidentation results also indicated that the addition of the FNS reinforcement was very helpful in maintaining the mechanical stability of the solder joint. These findings have provided a theoretical and experimental basis for the practical application of this novel composite solder with high-current densities.


2019 ◽  
Vol 31 (4) ◽  
pp. 261-270
Author(s):  
Guang Chen ◽  
Jiqiang Li ◽  
Xinwen Kuang ◽  
Yaofeng Wu ◽  
Fengshun Wu

Purpose The purpose of this paper is to investigate the effect of nickel-plated graphene (Ni-GNS) on the microstructure and mechanical properties of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder joints before and after an electro-migration (EM) experiment. Design/methodology/approach In this paper, SAC305 solder alloy doped with 0.1 Wt.% Ni-GNS was prepared via the powder metallurgy method. A U-shaped sample structure was also designed and prepared to conduct an EM experiment. The EM experiment was carried out with a current density of 1.5 × 104 A/cm2. The microstructural and mechanical evolutions of both solder joints under EM stressing were comparatively studied using SEM and nanoindentation. Findings The experimental results showed that for the SAC305 solder, the interfacial intermetallic compounds (IMC) formulated a protrusion with an average height of 0.42 µm at the anode after 360 h of EM stressing; however, despite this, the surface of the composite solder joint was relatively smooth. During the stressing period, the interfacial IMC on the anode side of the plain SAC305 solder showed a continuous increasing trend, while the IMC at the cathode presented a decreasing trend for its thickness as the stressing time increased; after 360 h of stressing, some cracks and voids had formed on the cathode side. For the SAC305/ Ni-GNS composite solder, a continuous increase in the thickness of the interfacial IMC was found on both the anode and cathode side; the growth rate of the interfacial IMC at the anode was higher than that at the cathode. The nanoindentation results showed that the hardness of the SAC305 solder joint presented a gradient distribution after EM stressing, while the hardness data showed a relatively homogeneous distribution in the SAC305/ Ni-GNS solder joint. Originality/value The experimental results showed that the Ni-GNS reinforcement could effectively mitigate the EM behavior in solder joints under high current stressing. Specifically, the Ni particles that plated the graphene sheets can work as a fixing agent to suppress the diffusion and migration of Sn and Cu atoms by forming Sn-Cu-Ni IMC. In addition, the nanoidentation results also indicated that the addition of the Ni-GNS reinforcement was very helpful in maintaining the mechanical stability of the solder joint. These findings have provided a theoretical and experimental basis for the practical application of this novel composite solder with high current densities.


2017 ◽  
Vol 29 (2) ◽  
pp. 85-91 ◽  
Author(s):  
Yan Zhu ◽  
Fenglian Sun

Purpose The purpose of this paper is to investigate the effect of geometric size on intermetallic compound (IMC) growth and elements diffusion of Cu/Sn/Cu solder joint and establish the correlation model between the thickness of the IMC layer and size of the solder joint on the dozens of microns scale. Design/methodology/approach The sandwich-structured Cu/Sn/Cu solder joints with different gaps between two copper-clad plates (δ) are fabricated using a reflow process. The microstructure and composition of solder joints are observed and analyzed by scanning electron microscopy. Findings After reflow, the thickness of the IMC and Cu concentration in solder layers increase with the reduction of δ from 50, 40, 30, 20 to 10 μm. During isothermal aging, the thickness of the IMC fails to increase according to the traditional parabolic rule due to changes in Cu concentration. The reduction of δ is the root cause of changes in Cu concentration and the growth rule of the IMC layer. A correlation model between the thickness of the IMC layer and δ is established. It is found that the thickness of the IMC layer is the function of aging time and δ. With δ reducing, the main control element of IMC growth transfers from Cu to Sn. Originality/value This paper shows the changes of IMC thickness and elements concentration with the reduction of the size of solder joints on the dozens of microns scale. A correlation model is established to calculate the thickness of the IMC layer during aging.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianing Wang ◽  
Jieshi Chen ◽  
Zhiyuan Zhang ◽  
Peilei Zhang ◽  
Zhishui Yu ◽  
...  

Purpose The purpose of this article is the effect of doping minor Ni on the microstructure evolution of a Sn-xNi (x = 0, 0.05 and 0.1 wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment. Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of interfacial layer was different due to the different mechanism of element diffusion of the two substrates. The PC Ni substrate mainly provided Ni atoms through grain boundary diffusion. The Ni3Sn4 phase of the Sn0.05Ni/PC Ni joint was finer, and the diffusion flux of Sn and Ni elements increased, so the Ni3Sn4 layer of this joint was the thickest. The SC Ni substrate mainly provided Ni atoms through the lattice diffusion. The Sn0.1Ni/SC Ni joint increases the number of Ni atoms at the interface due to the doping of 0.1Ni (wt.%) elements, so the joint had the thickest NiSn4 layer. Design/methodology/approach The effects of doping minor Ni on the microstructure evolution of an Sn-xNi (x = 0, 0.05 and 0.1 Wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment was investigated in this study. Findings Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of the interfacial layer was different due to the different mechanisms of element diffusion of the two substrates. Originality/value In this study, the effect of doping Ni on the growth and formation mechanism of IMCs of the Sn-xNi/Ni (single-crystal) solder joints (x = 0, 0.05 and 0.1 Wt.%) was investigated.


2015 ◽  
Vol 27 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Peter K. Bernasko ◽  
Sabuj Mallik ◽  
G. Takyi

Purpose – The purpose of this paper is to study the effect of intermetallic compound (IMC) layer thickness on the shear strength of surface-mount component 1206 chip resistor solder joints. Design/methodology/approach – To evaluate the shear strength and IMC thickness of the 1206 chip resistor solder joints, the test vehicles were conventionally reflowed for 480 seconds at a peak temperature of 240°C at different isothermal ageing times of 100, 200 and 300 hours. A cross-sectional study was conducted on the reflowed and aged 1206 chip resistor solder joints. The shear strength of the solder joints aged at 100, 200 and 300 hours was measured using a shear tester (Dage-4000PXY bond tester). Findings – It was found that the growth of IMC layer thickness increases as the ageing time increases at a constant temperature of 175°C, which resulted in a reduction of solder joint strength due to its brittle nature. It was also found that the shear strength of the reflowed 1206 chip resistor solder joint was higher than the aged joints. Moreover, it was revealed that the shear strength of the 1206 resistor solder joints aged at 100, 200 and 300 hours was influenced by the ageing reaction times. The results also indicate that an increase in ageing time and temperature does not have much influence on the formation and growth of Kirkendall voids. Research limitations/implications – A proper correlation between shear strength and fracture mode is required. Practical implications – The IMC thickness can be used to predict the shear strength of the component/printed circuit board pad solder joint. Originality/value – The shear strength of the 1206 chip resistor solder joint is a function of ageing time and temperature (°C). Therefore, it is vital to consider the shear strength of the surface-mount chip component in high-temperature electronics.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yanruoyue Li ◽  
Guicui Fu ◽  
Bo Wan ◽  
Zhaoxi Wu ◽  
Xiaojun Yan ◽  
...  

Purpose The purpose of this study is to investigate the effect of electrical and thermal stresses on the void formation of the Sn3.0Ag0.5Cu (SAC305) lead-free ball grid array (BGA) solder joints and to propose a modified mean-time-to-failure (MTTF) equation when joints are subjected to coupling stress. Design/methodology/approach The samples of the BGA package were subjected to a migration test at different currents and temperatures. Voltage variation was recorded for analysis. Scanning electron microscope and electron back-scattered diffraction were applied to achieve the micromorphological observations. Additionally, the experimental and simulation results were combined to fit the modified model parameters. Findings Voids appeared at the corner of the cathode. The resistance of the daisy chain increased. Two stages of resistance variation were confirmed. The crystal lattice orientation rotated and became consistent and ordered. Electrical and thermal stresses had an impact on the void formation. As the current density and temperature increased, the void increased. The lifetime of the solder joint decreased as the electrical and thermal stresses increased. A modified MTTF model was proposed and its parameters were confirmed by theoretical derivation and test data fitting. Originality/value This study focuses on the effects of coupling stress on the void formation of the SAC305 BGA solder joint. The microstructure and macroscopic performance were studied to identify the effects of different stresses with the use of a variety of analytical methods. The modified MTTF model was constructed for application to SAC305 BGA solder joints. It was found suitable for larger current densities and larger influences of Joule heating and for the welding ball structure with current crowding.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mardiana Said ◽  
Muhammad Firdaus Mohd Nazeri ◽  
Nurulakmal Mohd Sharif ◽  
Ahmad Azmin Mohamad

Purpose This paper aims to investigate the morphology and tensile properties of SAC305 solder alloy under the influence of microwave hybrid heating (MHH) for soldering at different microwave parameters. Design/methodology/approach Si wafer was used as susceptor in MHH for solder reflow. Microwave operating power for medium and high ranging from 40 to 140 s reflow time was used to investigate their effect on the microstructure and strength of SAC305/Cu solder joints. The morphology and elemental composition of the intermetallic compound (IMC) joint were evaluated on the top surface and cross-sectional view. Findings IMC formation transformed from scallop-like to elongated scallop-like structure for medium operating power and scallop-like to planar-like structure for high operating power when exposed to longer reflow time. Compositional and phase analysis confirmed that the observed IMCs consist of Cu6Sn5, Cu3Sn and Ag3Sn. A thinner IMC layer was formed at medium operating power, 80 s (2.4 µm), and high operating power, 40 s (2.5 µm). The ultimate tensile strength at high operating power, 40 s (45.5 MPa), was 44.9% greater than that at medium operating power, 80 s (31.4 MPa). Originality/value Microwave parameters with the influence of Si wafer in MHH in soldering have been developed and optimized. A microwave temperature profile was established to select the appropriate parameter for solder reflow. For this MHH soldering method, the higher operating power and shorter reflow time are preferable.


2018 ◽  
Vol 30 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Fakhrozi Che Ani ◽  
Azman Jalar ◽  
Abdullah Aziz Saad ◽  
Chu Yee Khor ◽  
Roslina Ismail ◽  
...  

Purpose This paper aims to investigate the characteristics of ultra-fine lead-free solder joints reinforced with TiO2 nanoparticles in an electronic assembly. Design/methodology/approach This study focused on the microstructure and quality of solder joints. Various percentages of TiO2 nanoparticles were mixed with a lead-free Sn-3.5Ag-0.7Cu solder paste. This new form of nano-reinforced lead-free solder paste was used to assemble a miniature package consisting of an ultra-fine capacitor on a printed circuit board by means of a reflow soldering process. The microstructure and the fillet height were investigated using a focused ion beam, a high-resolution transmission electron microscope system equipped with an energy dispersive X-ray spectrometer (EDS), and a field emission scanning electron microscope coupled with an EDS and X-ray diffraction machine. Findings The experimental results revealed that the intermetallic compound with the lowest thickness was produced by the nano-reinforced solder with a TiO2 content of 0.05 Wt.%. Increasing the TiO2 content to 0.15 Wt.% led to an improvement in the fillet height. The characteristics of the solder joint fulfilled the reliability requirements of the IPC standards. Practical implications This study provides engineers with a profound understanding of the characteristics of ultra-fine nano-reinforced solder joint packages in the microelectronics industry. Originality/value The findings are expected to provide proper guidelines and references with regard to the manufacture of miniaturized electronic packages. This study also explored the effects of TiO2 on the microstructure and the fillet height of ultra-fine capacitors.


1999 ◽  
Vol 124 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Wen-Hwa Chen ◽  
Kuo-Ning Chiang ◽  
Shu-Ru Lin

This study presents an efficient method to accurately predict solder joint geometry after a reflow process. The proposed method can be utilized for Solder Mask Defined (SMD), Non-Solder Mask Defined (NSMD), or C4 type solder joints. The reflow process involves several design factors capable of influencing the final shape of the molten solder joint, such as solder joint volume, restoring force, surface tension, contact angle, pad thickness, and pad size. These factors are all considered in the calculations. The computed results are compared with those using the Surface Evolver program and also with available numerical/experimental results. Their excellent agreement shows that the method developed herein can be practically applied to predict the reflow shape of SMD/NSMD solder joints. The difference between SMD and NSMD is also examined in detail. Results in this study provide designers with a fundamental guideline for accurately predicting the liquid formation of solder joints during the reflow process.


2016 ◽  
Vol 28 (2) ◽  
pp. 41-62 ◽  
Author(s):  
Chun Sean Lau ◽  
C.Y. Khor ◽  
D. Soares ◽  
J.C. Teixeira ◽  
M.Z. Abdullah

Purpose The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review include challenges in modelling of the reflow soldering process, optimization and the future challenges in the reflow soldering process. Besides, the numerical approach of lead-free solder reliability is also discussed. Design/methodology/approach Lead-free reflow soldering is one of the most significant processes in the development of surface mount technology, especially toward the miniaturization of the advanced SMCs package. The challenges lead to more complex thermal responses when the PCB assembly passes through the reflow oven. The virtual modelling tools facilitate the modelling and simulation of the lead-free reflow process, which provide more data and clear visualization on the particular process. Findings With the growing trend of computer power and software capability, the multidisciplinary simulation, such as the temperature and thermal stress of lead-free SMCs, under the influenced of a specific process atmosphere can be provided. A simulation modelling technique for the thermal response and flow field prediction of a reflow process is cost-effective and has greatly helped the engineer to eliminate guesswork. Besides, simulated-based optimization methods of the reflow process have gained popularity because of them being economical and have reduced time-consumption, and these provide more information compared to the experimental hardware. The advantages and disadvantages of the simulation modelling in the reflow soldering process are also briefly discussed. Practical implications This literature review provides the engineers and researchers with a profound understanding of the thermo-mechanical challenges of reflowed lead-free solder joints in SMCs and the challenges of simulation modelling in the reflow process. Originality/value The unique challenges in solder joint reliability, and direction of future research in reflow process were identified to clarify the solutions to solve lead-free reliability issues in the electronics manufacturing industry.


Sign in / Sign up

Export Citation Format

Share Document