Reducing the Uncertainties of Climate Projections: High-Resolution Climate Modeling of Aerosol and Climate Interactions on the Regional Scale Using COSMO-ART

Author(s):  
Bernhard Vogel ◽  
Andrew Ferrone ◽  
Tobias Schad

2020 ◽  
Author(s):  
Sebastian Gayler ◽  
Rajina Bajracharya ◽  
Tobias Weber ◽  
Thilo Streck

<p>Agricultural ecosystem models, driven by climate projections and fed with soil information and plausible management scenarios are frequently used tools to predict future developments in agricultural landscapes. On the regional scale, the required soil parameters must be derived from soil maps that are available in different spatial resolutions, ranging from grid cell sizes of 50 m up to 1 km and more. The typical spatial resolution of regional climate projections is currently around 12 km. Given the small-scale heterogeneity in soil properties, using the most accurate soil representation could be important for predictions of crop growth. However, simulations with very highly resolved soil data requires greater computing time and higher effort for data organization and storage. Moreover, the higher resolution may not necessarily lead to better simulations due to redundant information of the land surface and because the impact of climate forcing could dominate over the effect of soil variability. This leads to the question if the use of high-resolution soil data leads to significantly different predictions of future yields and grain protein trends compared to simulations in which soil data is adapted to the resolution of the climate input.</p><p>This study investigated the impact of weather and soil input on simulated crop growth in an intensively used agricultural region in Southwest Germany. For all areas classified as ‘arable land’ (CLC10), winter wheat growth was simulated over a 44-year period (2006 to 2050) using weather projections from three regional climate models and soil information at two spatial resolutions. The simulations were performed with the model system Expert-N 5.0, where the crop model Gecros was combined with the Richards equation and the CN turnover module of the model Daisy. Soil hydraulic parameters as well as initial values of soil organic matter pools were estimated from BK50 soil map information on soil texture and soil organic matter content, using pedo-transfer functions and SOM pool fractionation following Bruun and Jensen (2002). The coarser soil map is derived from BK50 soil map (50m x 50m) by selecting only the dominant soil type in a 12km × 12km grid to be representative for that grid cell. The crop model was calibrated with field data of crop phenology, leaf area, biomass, yield and crop nitrogen, which were collected at a research station within the study area between 2009 and 2018.</p><p>The predicted increase in temperatures during the growing season correlated with earlier maturity, lower yields and a higher grain protein content. The regional mean values varied by +/- 0.5 t/ha or +/-0.3 percentage points of protein content depending to the climate model used. On the regional scale, the simulated trends remained unchanged using high-resolution or coarse resolution soil data. However, there are strong differences in both the forecasted averages and the distribution of forecasts, as the coarser resolution captures neither the small-scale heterogeneity nor the average of the high-resolution results.</p>



Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1127
Author(s):  
Yanyu Zhang ◽  
Shuying Zang ◽  
Miao Li ◽  
Xiangjin Shen ◽  
Yue Lin

Permafrost is a key element of the cryosphere and sensitive to climate change. High-resolution permafrost map is important to environmental assessment, climate modeling, and engineering application. In this study, to estimate high-resolution Xing’an permafrost map (up to 1 km2), we employed the surface frost number (SFN) model and ground temperature at the top of permafrost (TTOP) model for the 2001–2018 period, driven by remote sensing data sets (land surface temperature and land cover). Based on the comparison of the modeling results, it was found that there was no significant difference between the two models. The performances of the SFN model and TTOP model were evaluated by using a published permafrost map. Based on statistical analysis, both the SFN model and TTOP model efficiently estimated the permafrost distribution in Northeast China. The extent of Xing’an permafrost distribution simulated by the SFN model and TTOP model were 6.88 × 105 km2 and 6.81 × 105 km2, respectively. Ground-surface characteristics were introduced into the permafrost models to improve the performance of models. The results provided a basic reference for permafrost distribution research at the regional scale.



2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Rui Ito ◽  
Tosiyuki Nakaegawa ◽  
Izuru Takayabu

AbstractEnsembles of climate change projections created by general circulation models (GCMs) with high resolution are increasingly needed to develop adaptation strategies for regional climate change. The Meteorological Research Institute atmospheric GCM version 3.2 (MRI-AGCM3.2), which is listed in the Coupled Model Intercomparison Project phase 5 (CMIP5), has been typically run with resolutions of 60 km and 20 km. Ensembles of MRI-AGCM3.2 consist of members with multiple cumulus convection schemes and different patterns of future sea surface temperature, and are utilized together with their downscaled data; however, the limited size of the high-resolution ensemble may lead to undesirable biases and uncertainty in future climate projections that will limit its appropriateness and effectiveness for studies on climate change and impact assessments. In this study, to develop a comprehensive understanding of the regional precipitation simulated with MRI-AGCM3.2, we investigate how well MRI-AGCM3.2 simulates the present-day regional precipitation around the globe and compare the uncertainty in future precipitation changes and the change projection itself between MRI-AGCM3.2 and the CMIP5 multiple atmosphere–ocean coupled GCM (AOGCM) ensemble. MRI-AGCM3.2 reduces the bias of the regional mean precipitation obtained with the high-performing CMIP5 models, with a reduction of approximately 20% in the bias over the Tibetan Plateau through East Asia and Australia. When 26 global land regions are considered, MRI-AGCM3.2 simulates the spatial pattern and the regional mean realistically in more regions than the individual CMIP5 models. As for the future projections, in 20 of the 26 regions, the sign of annual precipitation change is identical between the 50th percentiles of the MRI-AGCM3.2 ensemble and the CMIP5 multi-model ensemble. In the other six regions around the tropical South Pacific, the differences in modeling with and without atmosphere–ocean coupling may affect the projections. The uncertainty in future changes in annual precipitation from MRI-AGCM3.2 partially overlaps the maximum–minimum uncertainty range from the full ensemble of the CMIP5 models in all regions. Moreover, on average over individual regions, the projections from MRI-AGCM3.2 spread over roughly 0.8 of the uncertainty range from the high-performing CMIP5 models compared to 0.4 of the range of the full ensemble.



2019 ◽  
Vol 58 (12) ◽  
pp. 2617-2632 ◽  
Author(s):  
Qifen Yuan ◽  
Thordis L. Thorarinsdottir ◽  
Stein Beldring ◽  
Wai Kwok Wong ◽  
Shaochun Huang ◽  
...  

AbstractIn applications of climate information, coarse-resolution climate projections commonly need to be downscaled to a finer grid. One challenge of this requirement is the modeling of subgrid variability and the spatial and temporal dependence at the finer scale. Here, a postprocessing procedure for temperature projections is proposed that addresses this challenge. The procedure employs statistical bias correction and stochastic downscaling in two steps. In the first step, errors that are related to spatial and temporal features of the first two moments of the temperature distribution at model scale are identified and corrected. Second, residual space–time dependence at the finer scale is analyzed using a statistical model, from which realizations are generated and then combined with an appropriate climate change signal to form the downscaled projection fields. Using a high-resolution observational gridded data product, the proposed approach is applied in a case study in which projections of two regional climate models from the Coordinated Downscaling Experiment–European Domain (EURO-CORDEX) ensemble are bias corrected and downscaled to a 1 km × 1 km grid in the Trøndelag area of Norway. A cross-validation study shows that the proposed procedure generates results that better reflect the marginal distributional properties of the data product and have better consistency in space and time when compared with empirical quantile mapping.



1989 ◽  
Vol 20 (2) ◽  
pp. 99 ◽  
Author(s):  
S.S. Webster ◽  
R.W. Henley

High resolution airborne geophysical data over broad areas have been found to optimize exploration for epithermal gold deposits in differing geological environments.Genetic exploration models may be tested in favourable sites by the recognition of geophysical signatures. These signatures reflect structural, lithological and alteration patterns arising from controls on ore deposits and can be applied at regional or detailed scales, using the same data set.At regional scale (e.g. 1:100,000) the magnetic data reflect the regional tectonics and divide the area into domains for the application of appropriate genetic models. At prospect scale (e.g. 1:25,000) the radiometric data allow the extrapolation of poorly outcropping geology to provide a cost-effective mapping technique. The magnetic data can be used to supplement this interpretation or can be used to target deeper sources for direct investigation by drilling.



2021 ◽  
pp. 1
Author(s):  
Jacob Coburn ◽  
S.C. Pryor

AbstractThis work quantitatively evaluates the fidelity with which the Northern Annular Mode (NAM), Southern Annular Mode (SAM), Pacific-North American pattern (PNA), El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) and the first-order mode interactions are represented in Earth System Model (ESM) output from the CMIP6 archive. Several skill metrics are used as part of a differential credibility assessment (DCA) of both spatial and temporal characteristics of the modes across ESMs, ESM families and specific ESM realizations relative to ERA5. The spatial patterns and probability distributions are generally well represented but skill scores that measure the degree to which the frequencies of maximum variance are captured are consistently lower for most ESMs and climate modes. Substantial variability in skill scores manifests across realizations from individual ESMs for the PNA and oceanic modes. Further, the ESMs consistently overestimate the strength of the NAM-PNA first-order interaction and underestimate the NAM-AMO connection. These results suggest that the choice of ESM and ESM realizations will continue to play a critical role in determining climate projections at the global and regional scale at least in the near-term.



2017 ◽  
Vol 555 ◽  
pp. 708-723 ◽  
Author(s):  
Marco D'Oria ◽  
Massimo Ferraresi ◽  
Maria Giovanna Tanda


2006 ◽  
Vol 3 (3) ◽  
pp. 637-669 ◽  
Author(s):  
S. Natale ◽  
R. Sorgente ◽  
S. Gaberšek ◽  
A. Ribotti ◽  
A. Olita

Abstract. Ocean forecasts over the Central Mediterranean, produced by a near real time regional scale system, have been evaluated in order to assess their predictability. The ocean circulation model has been forced at the surface by a medium, high or very high resolution atmospheric forcing. The simulated ocean parameters have been compared with satellite data and they were found to be generally in good agreement. High and very high resolution atmospheric forcings have been able to form noticeable, although short-lived, surface current structures, due to their ability to detect transient atmospheric disturbances. The existence of the current structures has not been directly assessed due to lack of measurements. The ocean model in the slave mode was not able to develop dynamics different from the driving coarse resolution model which provides the boundary conditions.



2021 ◽  
Author(s):  
Thomas Noël ◽  
Harilaos Loukos ◽  
Dimitri Defrance

A high-resolution climate projections dataset is obtained by statistically downscaling climate projections from the CMIP6 experiment using the ERA5-Land reanalysis from the Copernicus Climate Change Service. This global dataset has a spatial resolution of 0.1°x 0.1°, comprises 5 climate models and includes two surface daily variables at monthly resolution: air temperature and precipitation. Two greenhouse gas emissions scenarios are available: one with mitigation policy (SSP126) and one without mitigation (SSP585). The downscaling method is a Quantile Mapping method (QM) called the Cumulative Distribution Function transform (CDF-t) method that was first used for wind values and is now referenced in dozens of peer-reviewed publications. The data processing includes quality control of metadata according to the climate modelling community standards and value checking for outlier detection.



Sign in / Sign up

Export Citation Format

Share Document