Low-Cost and Large-Area Electronics, Roll-to-Roll Processing and Beyond

Author(s):  
Katarzyna Wiesenhütter ◽  
Wolfgang Skorupa
MRS Bulletin ◽  
2006 ◽  
Vol 31 (6) ◽  
pp. 471-475 ◽  
Author(s):  
Marc Chason ◽  
Daniel R. Gamota ◽  
Paul W. Brazis ◽  
Krishna Kalyanasundaram ◽  
Jie Zhang ◽  
...  

AbstractDevelopments originally targeted toward economical manufacturing of telecommunications products have planted the seeds for new opportunities such as low-cost, large-area electronics based on printing technologies. Organic-based materials systems for printed wiring board (PWB) construction have opened up unique opportunities for materials research in the fabrication of modular electronic systems.The realization of successful consumer products has been driven by materials developments that expand PWB functionality through embedded passive components, novel MEMS structures (e.g., meso-MEMS, in which the PWB-based structures are at the milliscale instead of the microscale), and microfluidics within the PWB. Furthermore, materials research is opening up a new world of printed electronics technology, where active devices are being realized through the convergence of printing technologies and microelectronics.


2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


2015 ◽  
Vol 51 (79) ◽  
pp. 14696-14707 ◽  
Author(s):  
B. Susrutha ◽  
Lingamallu Giribabu ◽  
Surya Prakash Singh

Flexible thin-film photovoltaics facilitate the implementation of solar devices into portable, reduced dimension, and roll-to-roll modules. In this review, we describe recent developments in the fabrication of flexible perovskite solar cells that are low cost and highly efficient and can be used for the fabrication of large-area and lightweight solar cell devices.


2013 ◽  
Vol 1553 ◽  
Author(s):  
R. A. Sporea ◽  
S. Georgakopoulos ◽  
X. Xu ◽  
X. Guo ◽  
M. Shkunov ◽  
...  

ABSTRACTIn order to achieve high performance, the design of devices for large-area electronics needs to be optimized despite material or fabrication shortcomings. In numerous emerging technologies thin-film transistor (TFT) performance is hindered by contact effects. Here, we show that contact effects can be used constructively to create devices with performance characteristics unachievable by conventional transistor designs. Source-gated transistors (SGTs) are not designed with increasing transistor speed, mobility or sub-threshold slope in mind, but rather with improving certain aspects critical for real-world large area electronics such as stability, uniformity, power efficiency and gain. SGTs can achieve considerably lower saturation voltage and power dissipation compared to conventional devices driven at the same current; higher output impedance for over two orders of magnitude higher intrinsic gain; improved bias stress stability in amorphous materials; higher resilience to processing variations; current virtually independent of source-drain gap, source-gate overlap and semiconductor thickness variations. Applications such as amplifiers and drivers for sensors and actuators, low cost large area analog or digital circuits could greatly benefit from incorporating the SGT architecture.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 573
Author(s):  
Usama Tahir ◽  
Muhammad Ahmad Kamran ◽  
Myung Yung Jeong

Roll-to-roll ultraviolet (R2R-UV) imprinting is a low-cost and high-throughput method that includes the manufacturing of large-area functional films. However, the quality of the final product is obstructed by the bubble entrapment during the imprinting process. In this study, a multi-phase volume of fluid (VOF) numerical model was used to remove bubble entrapment during the R2R imprinting process, which covered all parameters. This new modified numerical model with open-channel boundary conditions was based on the single zone that contains the direct contact of UV resin with the imprinting mold during the filling process. In addition, this model simulated the UV resin filling into microcavities at the preceding and succeeding ends of the imprinting mold. Different patterns of imprinting mold were considered to enhance the fidelity of R2R-UV imprinting for the comprehensive analysis. The experimental results validated through numerical simulations revealed that the bubble entrapment can be controlled by varying various parameters such as speed of the imprinting system, viscosity, contact angles, and pattern shape. The proposed model may be useful for a continuous bubble-free R2R imprinting process in industrial applications that includes flexible displays and micro/nano-optics.


2016 ◽  
Vol 247 ◽  
pp. 206-214 ◽  
Author(s):  
Xiaoliang Cheng ◽  
Yu Song ◽  
Mengdi Han ◽  
Bo Meng ◽  
Zongming Su ◽  
...  

2012 ◽  
Vol 1412 ◽  
Author(s):  
Anton Greenwald ◽  
Jae Ryu ◽  
Yisi Liu ◽  
Rana Biswas ◽  
Jong Ok ◽  
...  

ABSTRACTWe investigated continuous fabrication of a large area 2-D metamaterial comprising a metal dot array on a dielectric coated substrate. We demonstrated patterning of metal dots arrays of varying patterns and shapes with diameter of about 2.5 μm and metal-to-metal spacing from 0.3 to 2.5 μm using a nano-imprinting stamp on a roller. The pattern was first fabricated on a standard photolithography mask, reproduced onto a silicon wafer master mold, and then transferred to a flexible polymer mold that was wrapped around a metal roller. The method was used to pattern a thin Al layer on top of SiO2 on a flexible polymer substrate. The aluminum was coated with a resist and the roller moved over the substrate with adjustable speed and pressure to imprint the fine pattern into the resist. The resist was cured, and a very thin layer of residual resist was removed by RIE, followed by a standard etching treatment for patterning the aluminum layer.The as-etched pattern had very few defects and the optical properties of the metamaterial were excellent and correlated well with simulations. This work has shown that low cost, rapid roll-to-roll processing of 2-D metamaterial structures is possible.


2017 ◽  
Vol 64 (5) ◽  
pp. 2030-2037 ◽  
Author(s):  
Jiaqing Zhao ◽  
Pengfei Yu ◽  
Shi Qiu ◽  
Qinghang Zhao ◽  
Linrun Feng ◽  
...  

2015 ◽  
Vol 3 (47) ◽  
pp. 12297-12307 ◽  
Author(s):  
Jwo-Huei Jou ◽  
Snehasis Sahoo ◽  
Sudhir Kumar ◽  
Hui-Huan Yu ◽  
Po-Hsun Fang ◽  
...  

A wet- and dry-process feasible host material is crucial to realize, respectively, low cost roll-to-roll fabrication of large area and high performance organic light-emitting diodes (OLEDs) with precise deposition of organic layers.


2010 ◽  
Vol 11 (12) ◽  
pp. 1960-1965 ◽  
Author(s):  
Natalia A. Azarova ◽  
Jack W. Owen ◽  
Claire A. McLellan ◽  
Marsha A. Grimminger ◽  
Eric K. Chapman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document