Measuring of Torque on Testing Device for Measuring Transmission Error

Author(s):  
M. Trochta ◽  
M. Burián ◽  
P. Maršálek ◽  
Z. Folta
1997 ◽  
Vol 78 (02) ◽  
pp. 855-858 ◽  
Author(s):  
Armando Tripodi ◽  
Veena Chantarangkul ◽  
Marigrazia Clerici ◽  
Barbara Negri ◽  
Pier Mannuccio Mannucci

SummaryA key issue for the reliable use of new devices for the laboratory control of oral anticoagulant therapy with the INR is their conformity to the calibration model. In the past, their adequacy has mostly been assessed empirically without reference to the calibration model and the use of International Reference Preparations (IRP) for thromboplastin. In this study we reviewed the requirements to be fulfilled and applied them to the calibration of a new near-patient testing device (TAS, Cardiovascular Diagnostics) which uses thromboplastin-containing test cards for determination of the INR. On each of 10 working days citrat- ed whole blood and plasma samples were obtained from 2 healthy subjects and 6 patients on oral anticoagulants. PT testing on whole blood and plasma was done with the TAS and parallel testing for plasma by the manual technique with the IRP CRM 149S. Conformity to the calibration model was judged satisfactory if the following requirements were met: (i) there was a linear relationship between paired log-PTs (TAS vs CRM 149S); (ii) the regression line drawn through patients data points, passed through those of normals; (iii) the precision of the calibration expressed as the CV of the slope was <3%. A good linear relationship was observed for calibration plots for plasma and whole blood (r = 0.98). Regression lines drawn through patients data points, passed through those of normals. The CVs of the slope were in both cases 2.2% and the ISIs were 0.965 and 1.000 for whole blood and plasma. In conclusion, our study shows that near-patient testing devices can be considered reliable tools to measure INR in patients on oral anticoagulants and provides guidelines for their evaluation.


Author(s):  
Syuhei Kurokawa ◽  
Yasutsune Ariura ◽  
Yoji Matsukawa ◽  
Toshiro Doi

2021 ◽  
Vol 42 (9) ◽  
Author(s):  
Nils von Preetzmann ◽  
Reiner Kleinrahm ◽  
Philipp Eckmann ◽  
Giuseppe Cavuoto ◽  
Markus Richter

AbstractDensities of an air-like binary mixture (0.2094 oxygen + 0.7906 nitrogen, mole fractions) were measured along six isotherms over the temperature range from 100 K to 298.15 K at pressures up to 8.0 MPa, using a low-temperature single-sinker magnetic suspension densimeter. The measurements were carried out at T = (100, 115, and 130) K in the homogeneous gas and liquid region, and at T = (145, 220, and 298.15) K in the supercritical region (critical temperature TC = 132.35 K); in total, we present results for 52 (T, p) state points. The relative expanded combined uncertainty (k = 2) of the experimental densities was estimated to be between 0.03 % and 0.13 %, except for four values near the critical point. The largest error is caused by the magnetic suspension coupling in combination with the mixture component oxygen, which is strongly paramagnetic; the resulting force transmission error is up to 1.1 %. However, this error can be corrected with a proven correction model to an uncertainty contribution in density of less than 0.044 %. Due to a supercritical liquefaction procedure and the integration of a special VLE-cell, it was possible to measure densities in the homogeneous liquid phase without changing the composition of the liquefied mixture. Moreover, saturated liquid and saturated vapor densities were determined at T = (100, 115, and 130) K by extrapolation of the experimental single-phase densities to the saturation pressure. The new experimental results were compared with the mixture model of Lemmon et al. for the system (nitrogen + argon + oxygen) and the GERG-2008 equation of state.


Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S303
Author(s):  
Jayasree Pillarisetti ◽  
Aleksandra Gruslova ◽  
John E. Porterfield ◽  
Marc D. Feldman ◽  
Anil G. Kottam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document