iSplash-OPTIMIZE: Optimized Linear Carangiform Swimming Motion

Author(s):  
Richard James Clapham ◽  
Huosheng Hu
1998 ◽  
Vol 353 (1369) ◽  
pp. 691-700 ◽  
Author(s):  
Luca A. van Duren ◽  
Eize J. Stamhuis ◽  
John J. Videler

Females of the calanoid copepod Temora longicornis react to chemical exudates of male conspecifics with little hops, quite distinct from their normal smooth uniform swimming motion. These hops possibly serve to create a hydrodynamical signal in the surrounding water, to increase encounter probability with potential mates. Laser sheet particle image velocimetry was used to investigate the flow fields associated with these hops and to compare them to the flow of the feeding current of an adult female. During, and immediately after a hop, the flow field around the copepod showed a marked difference from that of a foraging animal. During foraging, the highest velocity gradients were located around the feeding appendages of the copepod. During a hop, high velocity gradients are located behind the animal. About 0.5 seconds after the start of swimming leg movement, effects of the hop had virtually dissipated and the flow field resembled that around a foraging animal. The estimated volume of influence (i.e. the volume around the copepod where the animal has a significant influence on the water) increased about 12–fold during the hop compared with the situation around a foraging animal. Furthermore, the rate of viscous energy dissipation within the copepods' volume of influence increased nearly 80–fold. Hops may serve to increase encounter probability, but due to the short duration of the effect and the high energetic costs they would only be adaptive when other cues have indicated that suitable sexual partners are in the vicinity.


2021 ◽  
Author(s):  
Dilziba Kizghin ◽  
Sangjin Ryu ◽  
Younggil Park ◽  
Sunghwan Jung

Abstract Vorticella convallaria is a ciliated protozoan found in freshwater habitats. In the sessile or stalked trophont form, V. convallaria is shaped somewhat like a balloon as it has a body or zooid (the head of the balloon) that is about 40 μm large with cilia around its oral part, and a stalk (the string of a balloon) anchoring the zooid to a solid surface. When a trophont zooid of V. convallaria detached from the stalk, the zooid swims around in water by creating water flow using its oral cilia. In contrast to the stalk contraction of V. convallaria that has been well studied, the swimming motility of V. convallaria is little known. In this study, we measured the swimming trajectories of the stalkless trophont zooid of V. convallaria using video microscopy and Hele-Shaw cells with a gap height of 25 μm, traced the swimming zooid using image processing, and analyzed the swimming motion in terms of swimming velocity and mean square displacement. The stalkless trophont zooid of V . convallaria was found to swim in circular patterns with intermittent ballistic motions in the confinement, and the average swimming speed ranged from 20 μm/s to 110 μm/s. Since the swimming pattern of V. convallaria appeared to be affected by the level of confinement, we will continue characterizing the ciliate’s swimming in the Hele-Shaw cell with different gap heights. Our study is expected to reveal the swimming motility of V. convallaria and to advance general understanding of swimming of microorganisms.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 9
Author(s):  
Motomu Nakashima ◽  
Jacob Tebbe

Devices for swimmers with arm amputation/deficiency have not been developed a lot and therefore many improvements can be realized. Although swimmers often use paddles during training, paddles on the market are basically for swimmers without amputation/deficiency. The objective of this study was to analyze the swimming motion of a swimmer with unilateral transradial deficiency and to obtain the findings for development of better training paddles. The crawl stroke was filmed for a swimmer with unilateral transradial deficiency. The body geometry as well as the joint motion based on the filmed images were put into the swimming human simulation model SWUM, and a simulation was conducted. From the simulation, the coordination and thrusts of both limbs were obtained and fully discussed. Overall, significant asymmetry between the intact and deficient limbs was found. It was also found that the deficient limb contributed to the propulsion only for 7% of the intact limb.


2019 ◽  
Vol 39 (4) ◽  
pp. 476-489 ◽  
Author(s):  
Antoine Barbot ◽  
Dominique Decanini ◽  
Gilgueng Hwang

Helical microrobots with dimensions below 100 µm could serve many applications for manipulation and sensing in small, closed environments such as blood vessels or inside microfluidic chips. However, environmental conditions such as surface stiction from the channel wall or local flow can quickly result in the loss of control of the microrobot, especially for untrained users. Therefore, to automatically adapt to changing conditions, we propose an algorithm that switches between a surface-based motion of the microrobot and a 3D swimming motion depending on the local flow value. Indeed swimming is better for avoiding obstacles and difficult surface stiction areas but it is more sensitive to the flow than surface motion such as rolling or spintop motion. First, we prove the flow sensing ability of helical microrobots based on the difference between the tracked and theoretical speed. For this, a 50 µm long and 5 µm diameter helical microrobot measures the flow profile shape in two different microchannels. These measurements are then compared with simulation results. Then, we demonstrate both swimming and surface-based motion using closed-loop control. Finally, we test our algorithm by following a 2D path using closed-loop control, and adapting the type of motion depending on the flow speed measured by the microrobot. Such results could enable simple high-level control that could expand the development of microrobots toward applications in complex microfluidic environments.


Sign in / Sign up

Export Citation Format

Share Document