A Parallel Image Segmentation Method Based on SOM and GPU with Application to MRI Image Processing

Author(s):  
Ailing De ◽  
Yuan Zhang ◽  
Chengan Guo
2018 ◽  
Vol 2 (1) ◽  
pp. 65-74
Author(s):  
Angga Wijaya Kusuma ◽  
Rossy Lydia Ellyana

In the development of an image not only as a documentation of events. One area that requires image processing is in the field of medicine is radiology. In radiology there is a medical image required by doctors and researchers to be processed for patient analysis. One of the important problems in image processing and pattern recognition is image segmentation into homogeneous areas. Segmentation in medical images will result in a medical image with area boundaries that are important information for analysis. This research applies k-means algorithm to MRI (Magnetic Resonance Imaging) image segmentation. The input image used is the image of MRI (brain and breast) has gone through the compression stage. This compression process is done with the aim of reducing memory usage but the critical information content of MRI image is still maintained. The image of the segmentation result is evaluated through performance test using GCE, VOI, MSE, and PSNR parameters.


2013 ◽  
Vol 380-384 ◽  
pp. 1189-1192 ◽  
Author(s):  
Hai Jun Zhao

Image segmentation is a key step in image processing and image analysis and occupies an important position in image engineering.In this paper, basing on maximum variance between-class, an adaptive and multi-objective image segmentation method is proposed. The concrete implement is to determine adaptively the optimum number of threshold of image using the idea of variance decomposition,while calculating the weighted ratio of within class difference and class difference existing in each classification image. By comparing the ratio, the optimum number of target for image can be get. The experimental results show that the sub-images after segmentation are relatively clear and the differences between classes are obvious.


2020 ◽  
Vol 10 (2) ◽  
pp. 515-521 ◽  
Author(s):  
Guorui Chen

Aiming at the problems of noise sensitivity and unclear contour in existing MRI image segmentation algorithms, a segmentation method combining regularized P-M de-noising model and improved watershed algorithm is proposed. First, the brain MRI image is pre-processed to obtain a brain nuclear image. Then, the brain nuclear image is de-noised by a regularized P-M model. After that, the image is preliminarily segmented by the traditional watershed algorithm to extract the features of each small region. Finally, the small regions are merged by Fuzzy Clustering with Spatial Pattern (FCSP) to obtain the segmentation image with smooth edges. The experimental results show that the algorithm can accurately segment the gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) regions. The average AOM and ME of the segmentation results on the BrainWeb dataset reached 0.93 and 0.04, respectively.


Author(s):  
P. ZAMPERONI

The aim of this paper is to outline a unified approach to feature extraction for segmentation purposes by means of the rank-order filtering of grey values in a neighbourhood of each pixel of a digitized image. In the first section an overview of rank-order filtering for image processing is given, and a fast histogram algorithm is proposed. Section 2 deals with the extraction of a “locally most representative grey value”, defined as the maximum of the local histogram density function. In Section 3 several textural features are described, which can be extracted from the local histogram by means of rank-order filtering, and their properties are discussed. Section 4 formulates some general requirements to be met by the process of image segmentation, and describes a method based upon the features introduced in the former sections. In the last section some experimental results applied to aerial views obtained with the segmentation method of Sect. 4 are reported. These test images have been analyzed within the scope of an investigation centered on terrain recognition for agricultural and ecological purposes.


2012 ◽  
Vol 157-158 ◽  
pp. 1012-1015 ◽  
Author(s):  
Yu Miao ◽  
Wei Li Shi

Medical image segmentation can be divided into two categories: one is the region of interest (ROI) identification; the other is the description of the integrity and the extraction of interest region. The emergence of the level set method greatly promoted the development of medical image segmentation. This paper studies three different level set segmentation algorithm to achieve the effective segmentation for brain gray matter and white matter of MRI image.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lei Hua ◽  
Yi Gu ◽  
Xiaoqing Gu ◽  
Jing Xue ◽  
Tongguang Ni

Background: The brain magnetic resonance imaging (MRI) image segmentation method mainly refers to the division of brain tissue, which can be divided into tissue parts such as white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The segmentation results can provide a basis for medical image registration, 3D reconstruction, and visualization. Generally, MRI images have defects such as partial volume effects, uneven grayscale, and noise. Therefore, in practical applications, the segmentation of brain MRI images has difficulty obtaining high accuracy.Materials and Methods: The fuzzy clustering algorithm establishes the expression of the uncertainty of the sample category and can describe the ambiguity brought by the partial volume effect to the brain MRI image, so it is very suitable for brain MRI image segmentation (B-MRI-IS). The classic fuzzy c-means (FCM) algorithm is extremely sensitive to noise and offset fields. If the algorithm is used directly to segment the brain MRI image, the ideal segmentation result cannot be obtained. Accordingly, considering the defects of MRI medical images, this study uses an improved multiview FCM clustering algorithm (IMV-FCM) to improve the algorithm’s segmentation accuracy of brain images. IMV-FCM uses a view weight adaptive learning mechanism so that each view obtains the optimal weight according to its cluster contribution. The final division result is obtained through the view ensemble method. Under the view weight adaptive learning mechanism, the coordination between various views is more flexible, and each view can be adaptively learned to achieve better clustering effects.Results: The segmentation results of a large number of brain MRI images show that IMV-FCM has better segmentation performance and can accurately segment brain tissue. Compared with several related clustering algorithms, the IMV-FCM algorithm has better adaptability and better clustering performance.


2014 ◽  
Vol 998-999 ◽  
pp. 925-928 ◽  
Author(s):  
Zhi Bo Xu ◽  
Pei Jiang Chen ◽  
Shi Li Yan ◽  
Tai Hua Wang

Threshold segmentation method was widely applied in image process and the selection of threshold affected the final results of image segmentation to a large extent. In order to improve the accuracy and the calculation speed of image segmentation, an Otsu threshold segmentation method based on genetic algorithm was offered. According to the threshold and the gray scale values of pixels, the pixels were divided into two categories, and then the genetic algorithm was used to find the maximum variance between clusters and obtain the optimal threshold of segmentation image. The experimental results show that this method can be used to segment the image effectively, which make the basis for image processing and analysis in the next step.


Author(s):  
S. Shirly ◽  
K. Ramesh

Background: Magnetic Resonance Imaging is most widely used for early diagnosis of abnormalities in human organs. Due to the technical advancement in digital image processing, automatic computer aided medical image segmentation has been widely used in medical diagnostics. </P><P> Discussion: Image segmentation is an image processing technique which is used for extracting image features, searching and mining the medical image records for better and accurate medical diagnostics. Commonly used segmentation techniques are threshold based image segmentation, clustering based image segmentation, edge based image segmentation, region based image segmentation, atlas based image segmentation, and artificial neural network based image segmentation. Conclusion: This survey aims at providing an insight about different 2-Dimensional and 3- Dimensional MRI image segmentation techniques and to facilitate better understanding to the people who are new in this field. This comparative study summarizes the benefits and limitations of various segmentation techniques.


2014 ◽  
Vol 556-562 ◽  
pp. 3510-3513 ◽  
Author(s):  
Zu Sheng Chen ◽  
You Fu Wu

Image segmentation technique was used widely for computer vision and image processing. A robust technique of image segmentation plays a crucial role in identification problem. In this paper, a nonparametric and unsupervised method of automatic threshold for segmenting image was proposed, i.e. the optimal threshold is approximated by global average gray and local average gray, and this method was compared with other methods by using standard image. The experimental results show that our method proposed in this paper is robust. In addition, an image database of road traffic marking (www.ananth.in/RoadMarkingdetection.html) is provided to do this experiment for testing our method, the results show that our method is excellent.


Sign in / Sign up

Export Citation Format

Share Document