Large Scale Simplex Optimisation to Accelerate Kinetic Analysis

Author(s):  
Nicholas Dowson ◽  
Paul Thomas ◽  
Jye Smith ◽  
Olivier Salvado ◽  
Stephen Rose
Keyword(s):  
2018 ◽  
Vol 149 (4) ◽  
pp. 044504 ◽  
Author(s):  
Sho Ayuba ◽  
Donguk Suh ◽  
Kentaro Nomura ◽  
Toshikazu Ebisuzaki ◽  
Kenji Yasuoka

2014 ◽  
Vol 577 ◽  
pp. 71-76 ◽  
Author(s):  
Zhi Qiang Wu ◽  
Shu Zhong Wang ◽  
Jun Zhao ◽  
Lin Chen ◽  
Hai Yu Meng

Co-gasification of biomass and coal is increasingly considered as a promising technology for sustainable utilization of coal and large-scale use of biomass. Co-gasification characteristic and kinetic analysis are the basic and essential information for the application of this technology. In this paper, co-gasification behavior of a typical bituminous coal from western China and spent mushroom compost (SMC) was investigated through thermogravimetric analyzer. The temperature interval was from ambient temperature to 1000 ○C with various heating rates (10, 20, 40 ○C•min-1) under carbon dioxide atmosphere. Kinetic parameter was solved through Distribution Activation Energy Model (DAEM). The results indicated that he maximum decomposition rates of the mixture and SMC were higher than that of coal except 25% SMC. Slightly synergistic effect during the co-gasification was found. The average values of the activation energy were 25.07 kJ•mol-1 for bituminous coal, 204.47 kJ•mol-1 for 25% SMC, 123.14 kJ•mol-1 for 50% SMC, 144.05 kJ•mol-1 for 75% SMC and 227.50 kJ•mol-1 for SMC, respectively.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2981 ◽  
Author(s):  
Larissa Fedunik-Hofman ◽  
Alicia Bayon ◽  
Scott W. Donne

Reaction kinetics is an important field of study in chemical engineering to translate laboratory-scale studies to large-scale reactor conditions. The procedures used to determine kinetic parameters (activation energy, pre-exponential factor and the reaction model) include model-fitting, model-free and generalized methods, which have been extensively used in published literature to model solid-gas reactions. A comprehensive review of kinetic analysis methods will be presented using the example of carbonate looping, an important process applied to thermochemical energy storage and carbon capture technologies. The kinetic parameters obtained by different methods for both the calcination and carbonation reactions are compared. The experimental conditions, material properties and the kinetic method are found to strongly influence the kinetic parameters and recommendations are provided for the analysis of both reactions. Of the methods, isoconversional techniques are encouraged to arrive at non-mechanistic parameters for calcination, while for carbonation, material characterization is recommended before choosing a specific kinetic analysis method.


2017 ◽  
Vol 12 (12) ◽  
pp. 2940-2945 ◽  
Author(s):  
V. Dhamodharan ◽  
Shungo Kobori ◽  
Yohei Yokobayashi
Keyword(s):  

2012 ◽  
Vol 518-523 ◽  
pp. 3904-3907 ◽  
Author(s):  
Quan Cheng Zhou ◽  
Hong Mei Zhang ◽  
De Mao Li

Pyrolysis and kinetic analysis of Xanthoceras Sorbifolia polysaccharide were evaluated using the TG-DTG/DTA method. The results indicated that its mass loss occured in three-step process . The first step could be attributed to the expulsion of water of crystallization at 25 - 176 °C. The second step corresponded to the large scale degradation of X. Sorbifolia polysaccharide in the temperature range of 179 - 661 °C. The final step was slow degradation of residues. Heating rate had significant effects on the pyrolysis of X. Sorbifolia polysaccharide and nitrogen could improve its stability. A close value of activation energy E of the thermal degradation process has been obtained by FWO, KAS and Popescu methods. The possible kinetic model was estimated to be Jander 5 (g(α)=[1-(1-α)1/3]1/2.


2013 ◽  
Vol 579-580 ◽  
pp. 362-367
Author(s):  
Jian Jie Zhang ◽  
Wen Lei Sun ◽  
Wei Yi Wan

This paper using ANSYS software such as wind turbine blades and other key components of the kinetic analysis and research, the kinetic analysis method and finite element analysis software combine to validate the experimental data is reasonable. Specific contents are: wind turbine blade dynamics analysis. The wind turbine blades as slender cantilever, so you can use the ANSYS program flexible dynamic analysis modules. The module is used to calculate the alternating loads flexible body structural response, namely due to the coupling effect of making wind turbine blades load acceleration, deformation at any time are changing. Also changes with time of the blade root of force and torque, the forces and torques of the hub provides theoretical data for further analysis. In this paper, the key components that wind turbine blades for the kinetic analysis, the relevant conclusions. Wind generator system for future scientific design, blades and other key components of the failure prediction assessment provides theoretical support. Wind turbine blades rotate in the movement through the air to promote the flow of the wind energy into mechanical energy, electrical energy eventually [. Leaves the force in the system is particularly complex, by gravity, such as the formation aerodynamic pull, bend and other effects and coupling effects [. Leaves elongate resilient structure is characterized by large-scale, flexible. During operation, the fan blade damage resonance is an important reason, it is how to use the features to reduce structural failure of the fan so that the safe operation of wind power generation is one of key technologies [. Wind force generator is one of the most complex parts blades, due to its tangential short span long, flexible, and therefore prone to vibration, wind turbine blades are a variety of mechanical vibration occurs first site. Therefore, from the wind turbine operation and design considerations for wind turbine blades for stability margin analysis and linear stability analysis are important.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Sign in / Sign up

Export Citation Format

Share Document