Heating Uniformity Evaluation in Domestic Cooking Using Inverse Modelling

Author(s):  
Fernando Sanz-Serrano ◽  
Carlos Sagues ◽  
Sergio Llorente
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Linlong Mu ◽  
Jianhong Lin ◽  
Zhenhao Shi ◽  
Xingyu Kang

Potential damages to existing tunnels represent a major concern for constructing deep excavations in urban areas. The uncertainty of subsurface conditions and the nonlinear interactions between multiple agents (e.g., soils, excavation support structures, and tunnel structures) make the prediction of the response of tunnel induced by adjacent excavations a rather difficult and complex task. This paper proposes an initiative to solve this problem by using process-based modelling, where information generated from the interaction processes between soils, structures, and excavation activities is utilized to gradually reduce uncertainty related to soil properties and to learn the interaction patterns through machine learning techniques. To illustrate such a concept, this paper presents a simple process-based model consisting of artificial neural network (ANN) module, inverse modelling module, and mechanistic module. The ANN module is trained to learn and recognize the patterns of the complex interactions between excavation deformations, its geometries and support structures, and soil properties. The inverse modelling module enables a gradual reduction of uncertainty associated with soil characterizations by accumulating field observations during the construction processes. Based on the inputs provided by the former two modules, the mechanistic module computes the response of tunnel. The effectiveness of the proposed process-based model is evaluated against high-fidelity numerical simulations and field measurements. These evaluations suggest that the strategy of combining artificial intelligence techniques with information generated during interaction processes can represent a promising approach to solve complex engineering problems in conventional industries.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 763
Author(s):  
Ran Yang ◽  
Zhenbo Wang ◽  
Jiajia Chen

Mechanistic-modeling has been a useful tool to help food scientists in understanding complicated microwave-food interactions, but it cannot be directly used by the food developers for food design due to its resource-intensive characteristic. This study developed and validated an integrated approach that coupled mechanistic-modeling and machine-learning to achieve efficient food product design (thickness optimization) with better heating uniformity. The mechanistic-modeling that incorporated electromagnetics and heat transfer was previously developed and validated extensively and was used directly in this study. A Bayesian optimization machine-learning algorithm was developed and integrated with the mechanistic-modeling. The integrated approach was validated by comparing the optimization performance with a parametric sweep approach, which is solely based on mechanistic-modeling. The results showed that the integrated approach had the capability and robustness to optimize the thickness of different-shape products using different initial training datasets with higher efficiency (45.9% to 62.1% improvement) than the parametric sweep approach. Three rectangular-shape trays with one optimized thickness (1.56 cm) and two non-optimized thicknesses (1.20 and 2.00 cm) were 3-D printed and used in microwave heating experiments, which confirmed the feasibility of the integrated approach in thickness optimization. The integrated approach can be further developed and extended as a platform to efficiently design complicated microwavable foods with multiple-parameter optimization.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1622
Author(s):  
Wipawee Tepnatim ◽  
Witchuda Daud ◽  
Pitiya Kamonpatana

The microwave oven has become a standard appliance to reheat or cook meals in households and convenience stores. However, the main problem of microwave heating is the non-uniform temperature distribution, which may affect food quality and health safety. A three-dimensional mathematical model was developed to simulate the temperature distribution of four ready-to-eat sausages in a plastic package in a stationary versus a rotating microwave oven, and the model was validated experimentally. COMSOL software was applied to predict sausage temperatures at different orientations for the stationary microwave model, whereas COMSOL and COMSOL in combination with MATLAB software were used for a rotating microwave model. A sausage orientation at 135° with the waveguide was similar to that using the rotating microwave model regarding uniform thermal and electric field distributions. Both rotating models provided good agreement between the predicted and actual values and had greater precision than the stationary model. In addition, the computational time using COMSOL in combination with MATLAB was reduced by 60% compared to COMSOL alone. Consequently, the models could assist food producers and associations in designing packaging materials to prevent leakage of the packaging compound, developing new products and applications to improve product heating uniformity, and reducing the cost and time of the research and development stage.


2019 ◽  
Vol 88 (5) ◽  
pp. 768-779
Author(s):  
Marjolein Bruijning ◽  
Eelke Jongejans ◽  
Martin M. Turcotte

2021 ◽  
Author(s):  
Christopher George Galley ◽  
Peter Lelievre ◽  
Amir Haroon ◽  
Sebastian Graber ◽  
John William Jamieson ◽  
...  

2021 ◽  
pp. 103933
Author(s):  
J. Fernández-Gálvez ◽  
J.A.P. Pollacco ◽  
L. Lilburne ◽  
S. McNeill ◽  
S. Carrick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document