Agro-Industrial Waste Materials and their Recycled Value-Added Applications: Review

2017 ◽  
pp. 1-11 ◽  
Author(s):  
Mohd Yusuf
Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6333
Author(s):  
Virendra Kumar Yadav ◽  
Krishna Kumar Yadav ◽  
Vineet Tirth ◽  
Govindhan Gnanamoorthy ◽  
Nitin Gupta ◽  
...  

Environmental pollution is one of the major concerns throughout the world. The rise of industrialization has increased the generation of waste materials, causing environmental degradation and threat to the health of living beings. To overcome this problem and effectively handle waste materials, proper management skills are required. Waste as a whole is not only waste, but it also holds various valuable materials that can be used again. Such useful materials or elements need to be segregated and recovered using sustainable recovery methods. Agricultural waste, industrial waste, and household waste have the potential to generate different value-added products. More specifically, the industrial waste like fly ash, gypsum waste, and red mud can be used for the recovery of alumina, silica, and zeolites. While agricultural waste like rice husks, sugarcane bagasse, and coconut shells can be used for recovery of silica, calcium, and carbon materials. In addition, domestic waste like incense stick ash and eggshell waste that is rich in calcium can be used for the recovery of calcium-related products. In agricultural, industrial, and domestic sectors, several raw materials are used; therefore, it is of high economic interest to recover valuable minerals and to process them and convert them into merchandisable products. This will not only decrease environmental pollution, it will also provide an environmentally friendly and cost-effective approach for materials synthesis. These value-added materials can be used for medicine, cosmetics, electronics, catalysis, and environmental cleanup.


Author(s):  
Rajesh Kumar ◽  
Amiya K. Samanta ◽  
D. K. Singha Roy

At present in India, about 960 million metric tons of solid waste is being generated annually as byproducts during industrial, mining, municipal, agricultural and other processes. Advances in solid waste management resulted in alternative construction materials as a substitute to traditional materials like bricks, blocks, tiles, aggregates, ceramics, cement, lime, soil, timber and paint. To safeguard the environment, efforts are being made for recycling different wastes and to utilize them in value added applications. The cement industries have been making significant progress in reducing carbon dioxide (CO2) emissions through improvements in process technology and enhancements in process efficiency, but further improvements are limited because CO2 production is inherent to the basic process of calcinations of limestone. In the past two decades, various investigations have been conducted on industrial wastes like flyash, blast furnace slag, Silica fume, rice husks and other industrial waste materials to act as cement replacements .This paper consist of a review extensively conducted on publications related to utilization of waste materials as cement replacement with an intention to develop a process so as to produce an eco-friendly concrete having similar or higher strength and thus simultaneously providing a remedy to environmental hazards resulting from waste material disposal.


Author(s):  
Rajesh Kumar ◽  
Amiya K. Samanta ◽  
D. K. Singha Roy

At present in India, about 960 million metric tons of solid waste is being generated annually as byproducts during industrial, mining, municipal, agricultural and other processes. Advances in solid waste management resulted in alternative construction materials as a substitute to traditional materials like bricks, blocks, tiles, aggregates, ceramics, cement, lime, soil, timber and paint. To safeguard the environment, efforts are being made for recycling different wastes and to utilize them in value added applications. The cement industries have been making significant progress in reducing carbon dioxide (CO2) emissions through improvements in process technology and enhancements in process efficiency, but further improvements are limited because CO2 production is inherent to the basic process of calcinations of limestone. In the past two decades, various investigations have been conducted on industrial wastes like flyash, blast furnace slag, Silica fume, rice husks and other industrial waste materials to act as cement replacements .This paper consist of a review extensively conducted on publications related to utilization of waste materials as cement replacement with an intention to develop a process so as to produce an eco-friendly concrete having similar or higher strength and thus simultaneously providing a remedy to environmental hazards resulting from waste material disposal.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shamsad Ahmad ◽  
Ibrahim Hakeem ◽  
Mohammed Maslehuddin

In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required.


2017 ◽  
Vol 7 (5) ◽  
pp. 514 ◽  
Author(s):  
Zeynab Emdadi ◽  
Nilofar Asim ◽  
Mohamad Amin ◽  
Mohd Ambar Yarmo ◽  
Ali Maleki ◽  
...  

2019 ◽  
Vol 828 ◽  
pp. 14-17
Author(s):  
Malgorzata Ulewicz ◽  
Jakub Jura

The preliminary results of utilization of fly and bottom ash from combustion of biomass for the produce of cement mortars has been presented. Currently, this waste are deposited in industrial waste landfills. The chemical composition of waste materials was determined using X-ray fluorescence (spectrometer ARL Advant 'XP). ). In the studies sand was replaced by mix of fly and bottom ash from the combustion of biomass in an amount of 10-30% by weight of cement CEM I 42.5 R (Cemex). The obtained cement mortar concrete were subjected to microscopic examination (LEO Electron Microscopy Ltd.) and their compressive strength (PN-EN-196-1), frost resistance (PN-EN 1015-11 and PN-B -04500 ) and absorbability (PN-85/B-04500) were identified. The obtained results showed, the replacement of the cement by mix ashes from combustion of biomass reduce consumption of raw materials and will have a good influence on the environment.


Sign in / Sign up

Export Citation Format

Share Document