Influence of Mix Fly and Bottom Ashes from Biomass on Selected Properties of Cement Mortars

2019 ◽  
Vol 828 ◽  
pp. 14-17
Author(s):  
Malgorzata Ulewicz ◽  
Jakub Jura

The preliminary results of utilization of fly and bottom ash from combustion of biomass for the produce of cement mortars has been presented. Currently, this waste are deposited in industrial waste landfills. The chemical composition of waste materials was determined using X-ray fluorescence (spectrometer ARL Advant 'XP). ). In the studies sand was replaced by mix of fly and bottom ash from the combustion of biomass in an amount of 10-30% by weight of cement CEM I 42.5 R (Cemex). The obtained cement mortar concrete were subjected to microscopic examination (LEO Electron Microscopy Ltd.) and their compressive strength (PN-EN-196-1), frost resistance (PN-EN 1015-11 and PN-B -04500 ) and absorbability (PN-85/B-04500) were identified. The obtained results showed, the replacement of the cement by mix ashes from combustion of biomass reduce consumption of raw materials and will have a good influence on the environment.

2019 ◽  
Vol 972 ◽  
pp. 3-9
Author(s):  
Malgorzata Ulewicz ◽  
Jakub Jura

The preliminary results of utilization of bottom ash from combustion of biomass for the produce of concrete has been presented. Currently, this waste are deposited in industrial waste landfills. The chemical composition of waste materials was determined using X-ray fluorescence (spectrometer ARL Advant 'XP). Concrete were made using CEM I 42.5 R (Cemex) and sand - gravel mix aggregate. The obtained concrete were subjected to microscopic examination (LEO Electron Microscopy Ltd.) and their compressive strength (PN-EN-196-1) and absorbability (PN-85/B-04500) were identified. The obtained results showed, the replacement of the natural aggregates by bottom ash from combustion of biomass reduce consumption of raw materials and will have a good influence on the environment.


2017 ◽  
Vol 18 ◽  
pp. 01029
Author(s):  
Małgorzata Ulewicz ◽  
Jakub Jura

The preliminary results of fly and bottom ash mixture form combustion od biomass (80% of tree waste and 20% of palm kernel shells) for the produce of ceramic mortars has been presented. Currently, bio- ash from fluidized bed are deposited in landfills. Use of this ash to production of cement mortar instead of sand will reduce the consumption of the mineral resources. The chemical composition of this waste materials was determined using X-ray fluorescence (spectrometer ARL Advant ‘XP). Cement mortar were made using CEM I 42.5 R. The ash were added in an amount 20% of cement weight (in different proportions of fly and bottom ash). The results showed, that the compressive strength (after 28 days) of cement mortar containing ash is higher regardless of the type of ash mixture used. The highest compressive strength (increased by 7.0% compared to the control sample) was found for cement mortars in which the ratio of fly ash to bottom ash was 10/90. This mortars also showed the highest frost resistance (after 150 cycles freezes and unfreeze). The largest decrease the compressive strength (over 18.7%) after the frost resistance test. While cement mortars in which the ratio of fly ash to bottom ash was 90/10 showed the highest frost resistance (after 150 cycles freezes and unfreeze).


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3295
Author(s):  
Mohammad R. Irshidat ◽  
Nasser Al-Nuaimi

This paper experimentally investigates the effect of utilization of carbon dust generated as an industrial waste from aluminum factories in cementitious composites production. Carbon dust is collected, characterized, and then used to partially replace cement particles in cement mortar production. The effect of adding different dosages of carbon dust in the range of 5% to 40% by weight of cement on compressive strength, microstructure, and chemical composition of cement mortar is investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF) analysis are used to justify the results. Experimental results show that incorporation of carbon dust in cement mortar production not only reduces its environmental side effects but also enhances the strength of cementitious composites. Up to 10% carbon dust by weight of cement can be added to the mixture without adversely affecting the strength of the mortar. Any further addition of carbon dust would decrease the strength. Best enhancement in compressive strength (27%) is achieved in the case of using 5% replacement ratio. SEM images show that incorporation of small amount of carbon dust (less than 10%) lead to produce denser and more compact-structure cement mortar.


2018 ◽  
Vol 27 (3) ◽  
pp. 348-354 ◽  
Author(s):  
Jakub Jura ◽  
Małgorzata Ulewicz

The article presents the results of research aimed at using glass waste and ash from biomass. The tests were carried out for cement mortars samples with using glass cullet, ash from biomass and using both wastes in 50/50 proportions. The physical and mechanical properties of the standard mortar and modified mortars were tested. Standard mortar and cement mortar samples were made in which 10, 20 and 30% of the cement mass was used as part of the standard sand. The samples were made of CEM I 42.5R. Mortars containing fly ash addition had an increased compressive strength and a smaller drop in compressive strength after frost resistance tests than standard mortar. The use of glass cullet in the amount of up to 20% did not reveal any changes in the mechanical properties of mortars, but using them in a larger amount resulted in unfavorable results. The use of a mixture of these two waste materials did not improve the results. The research has shown the possibility of using this waste to modify cement mortars.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 910
Author(s):  
Sabina Dolenec ◽  
Katarina Šter ◽  
Maruša Borštnar ◽  
Klara Nagode ◽  
Andrej Ipavec ◽  
...  

This study investigated the influence of different cooling regimes on the microstructure and consequent reactivity of belite-sulfoaluminate clinkers. The cement clinkers were synthesized by incorporating secondary raw materials, such as titanogypsum and bottom ash, to the natural raw materials. Clinker phases were determined by Rietveld quantitative phase analysis, while the distribution morphology and the incorporation of substitute ions in the phases were characterized by scanning electron microscopy using energy-dispersive X-ray spectroscopy (SEM/EDS). Clinker reactivity was studied using isothermal calorimetry and was additionally investigated through compressive strength, which was determined for the cement prepared from the synthesized clinkers. X-ray diffraction analysis showed that, as well as the three main phases (belite, calcium sulfoaluminate, and ferrite), the clinkers contained additional minor phases (mayenite, gehlenite, arkanite, periclase, and perovskite), the ratios of which varied according to the cooling regime utilized. Microscopic observations indicated that the cooling regime also influenced the crystal size and morphology of the main phases, which consequently affected clinker reactivity. Furthermore, a smaller amount of substitute elements was incorporated in the main phases when cooling was slowed. Results showed that, in comparison to clinkers cooled at slower rates, air quenched clinkers reacted faster and exhibited a higher compressive strength at 7 days.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2136
Author(s):  
Shaokang Zhang ◽  
Ru Wang ◽  
Linglin Xu ◽  
Andreas Hecker ◽  
Horst-Michael Ludwig ◽  
...  

This paper studies the influence of hydroxyethyl methyl cellulose (HEMC) on the properties of calcium sulfoaluminate (CSA) cement mortar. In order to explore the applicability of different HEMCs in CSA cement mortars, HEMCs with higher and lower molar substitution (MS)/degree of substitution (DS) and polyacrylamide (PAAm) modification were used. At the same time, two kinds of CSA cements with different contents of ye’elimite were selected. Properties of cement mortar in fresh and hardened states were investigated, including the fluidity, consistency and water-retention rate of fresh mortar and the compressive strength, flexural strength, tensile bond strength and dry shrinkage rate of hardened mortar. The porosity and pore size distribution were also analyzed by mercury intrusion porosimetry (MIP). Results show that HEMCs improve the fresh state properties and tensile bond strength of both types of CSA cement mortars. However, the compressive strength of CSA cement mortars is greatly decreased by the addition of HEMCs, and the flexural strength is decreased slightly. The MIP measurement shows that HEMCs increase the amount of micron-level pores and the porosity. The HEMCs with different MS/DS have different effects on the improvement of tensile bond strength in different CSA cement mortars. PAAm modification can improve the tensile bond strength of HEMC-modified CSA cement mortar.


2012 ◽  
Vol 36 ◽  
pp. 655-662 ◽  
Author(s):  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn ◽  
Arnon Chaipanich

2021 ◽  
Vol 325 ◽  
pp. 181-187
Author(s):  
Martin Nguyen ◽  
Radomír Sokolář

This article examines the influence of fly ash on corrosion resistance of refractory forsterite-spinel ceramics by molten iron as a corrosive medium. Fly ash in comparison with alumina were used as raw materials and sources of aluminium oxide for synthesis of forsterite-spinel refractory ceramics. Raw materials were milled, mixed in different ratios into two sets of mixtures and sintered at 1550°C for 2 hours. Samples were characterized by X-ray diffraction analysis and thermal dilatometric analysis. Crucibles were then made from the fired ceramic mixtures and fired together with iron at its melting point of 1535°C for 5 hours. The corrosion resistance was evaluated by scanning electron microscopy on the transition zones between iron and ceramics. Mixtures with increased amount of spinel had higher corrosion resistance and mixtures with fly ash were comparable to mixtures with alumina in terms of corrosion resistance and refractory properties.


Sign in / Sign up

Export Citation Format

Share Document