scholarly journals The Role of the Neuropilins in Tumour Angiogenesis and Tumour Progression

Author(s):  
Dan Liu ◽  
Marwa Mahmoud ◽  
Carla Milagre ◽  
Ian Zachary ◽  
Paul Frankel
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Shan Gao ◽  
Jingcheng Jiang ◽  
Pan Li ◽  
Huijuan Song ◽  
Weiwei Wang ◽  
...  

Metformin is one of the most widely prescribed antidiabetics for type 2 diabetes. A critical role of metformin against tumorigenesis has recently been implicated, although several studies also reported the lack of anticancer property of the antidiabetics. Given the controversies regarding the potential role of metformin against tumour progression, the effect of metformin against breast, cervical, and ovarian tumour cell lines was examined followed byin vivoassessment of metformin on tumour growth using xenograft breast cancer models. Significant inhibitory impact of metformin was observed in MCF-7, HeLa, and SKOV-3 cells, suggesting an antiproliferative property of metformin against breast, cervical, and ovarian tumour cells, respectively, with the breast tumour cells, MCF-7, being the most responsive.In vivoassessment was subsequently carried out, where mice with breast tumours were treated with metformin (20 mg/kg body weight) or sterile PBS solution for 15 consecutive days. No inhibition of breast tumour progression was detected. However, tumour necrosis was significantly increased in the metformin-treated group, accompanied by decreased capillary formation within the tumours. Thus, despite the lack of short-term benefit of metformin against tumour progression, a preventive role of metformin against breast cancer was implicated, which is at partially attributable to the attenuation of tumour angiogenesis.


2020 ◽  
Vol 48 (6) ◽  
pp. 2539-2555
Author(s):  
Amir M. Alsharabasy ◽  
Sharon A. Glynn ◽  
Abhay Pandit

The extracellular matrix (ECM) dynamics in tumour tissue are deregulated compared to the ECM in healthy tissue along with disorganized architecture and irregular behaviour of the residing cells. Nitric oxide (NO) as a pleiotropic molecule exerts different effects on the components of the ECM driving or inhibiting augmented angiogenesis and tumour progression and tumour cell proliferation and metastasis. These effects rely on the concentration of NO within the tumour tissue, the nature of the surrounding microenvironment and the sensitivity of resident cells to NO. In this review article, we summarize the recent findings on the correlation between the levels of NO and the ECM components towards the modulation of tumour angiogenesis in different types of cancers. These are discussed principally in the context of how NO modulates the expression of ECM proteins resulting in either the promotion or inhibition of tumour growth via tumour angiogenesis. Furthermore, the regulatory effects of individual ECM components on the expression of the NO synthase enzymes and NO production were reviewed. These findings support the current efforts for developing effective therapeutics for cancers.


2020 ◽  
Vol 20 ◽  
Author(s):  
Helen Shiphrah Vethakanraj ◽  
Niveditha Chandrasekaran ◽  
Ashok Kumar Sekar

: Acid ceramidase (AC), the key enzyme of the ceramide metabolic pathway hydrolyzes pro-apoptotic ceramide to sphingosine, which by the action of sphingosine-1-kinase is metabolized to mitogenic sphingosine-1-phosphate. The intracellular level of AC determines ceramide/sphingosine-1-phosphate rheostat which in turn decides the cell fate. The upregulated AC expression during cancerous condition acts as a “double-edged sword” by converting pro-apoptotic ceramide to anti-apoptotic sphingosine-1-phosphate, wherein on one end, the level of ceramide is decreased and on the other end, the level of sphingosine-1-phosphate is increased, thus altogether aggravating the cancer progression. In addition, cancer cells with upregulated AC expression exhibited increased cell proliferation, metastasis, chemoresistance, radioresistance and numerous strategies were developed in the past to effectively target the enzyme. Gene silencing and pharmacological inhibition of AC sensitized the resistant cells to chemo/radiotherapy thereby promoting cell death. The core objective of this review is to explore AC mediated tumour progression and the potential role of AC inhibitors in various cancer cell lines/models.


Author(s):  
Shruthi Sanjitha Sampath ◽  
Sivaramakrishnan Venkatabalsubramanian ◽  
Satish Ramalingam

: MicroRNAs regulate gene expression at the posttranscriptional level by binding to the mRNA of their target genes. The dysfunction of miRNAs is strongly associated with the inflammation of the colon. Besides, some microRNAs are shown to suppress tumours while others promote tumour progression and metastasis. Inflammatory bowel diseases include Crohn’s disease and Ulcerative colitis which increase the risk factor for inflammation-associated colon cancer. MicroRNAs are shown to be involved in gastrointestinal pathologies, by targeting the transcripts encoding proteins of the intestinal barrier and their regulators that are associated with inflammation and colon cancer. Detection of these microRNAs in the blood, serum, tissues, faecal matter, etc will enable us to use these microRNAs as biomarkers for early detection of the associated malignancies and design novel therapeutic strategies to overcome the same. Information on MicroRNAs can be applied for the development of targeted therapies against inflammation-mediated colon cancer.


2021 ◽  
Author(s):  
Marlena Brzozowa-Zasada

Summary Background It is generally accepted that angiogenesis is a complex and tightly regulated process characterized by the growth of blood vessels from existing vasculature. Activation of the Notch signalling pathway affects multiple aspects of vascular development. One of the components of the Notch signalling pathway, Delta-like ligand 4 (DLL4), has recently appeared as a critical regulator of tumour angiogenesis and thus as a promising therapeutic target. Methods This review article includes available data from peer-reviewed publications associated with the role of DLL4 in cancer angiogenesis. Searches were performed in PubMed, EMBASE, Google Scholar and Web of Science using the terms “tumour angiogenesis”, “DLL4”, “Notch signalling” and “anti-cancer therapy”. Results The survival curves of cancer patients revealed that the patients with high DLL4 expression levels had significantly shorter survival times than the patients with low DLL4 expression. Moreover, a positive correlation was also identified between DLL4 and VEGF receptorsʼ expression levels. It seems that inhibition of DLL4 may exert potent growth inhibitory effects on some tumours resistant to anti-VEGF therapies. A great number of blocking agents of DLL4/Notch signalling including anti-DLL4 antibodies, DNA vaccination, Notch antibodies and gamma-secretase inhibitors have been studied in preclinical tumour models. Conclusion DLL4 seems to be a promising target in anti-cancer therapy. Nevertheless, the careful evaluation of adverse effects on normal physiological processes in relation to therapeutic doses of anti-DLL4 drugs will be significant for advancement of DLL4 blocking agents in clinical oncology.


2004 ◽  
Vol 22 (1) ◽  
pp. 1-11 ◽  
Author(s):  
M.J. Plank* ◽  
B.D. Sleeman ◽  
P.F. Jones‡
Keyword(s):  

FEBS Open Bio ◽  
2013 ◽  
Vol 3 (1) ◽  
pp. 291-301 ◽  
Author(s):  
Marion Lavergne ◽  
Marie-Lise Jourdan ◽  
Claire Blechet ◽  
Serge Guyetant ◽  
Alain Le Pape ◽  
...  

1997 ◽  
Vol 7 (SUPPLEMENT 2) ◽  
pp. S19 ◽  
Author(s):  
Christelle Doucet ◽  
Raffaella Meazza ◽  
Corinne Pottin-Clemenceau ◽  
Marco Scudeletti ◽  
Danielle Brouty-Boye ◽  
...  

Open Biology ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 170006 ◽  
Author(s):  
B. Calì ◽  
B. Molon ◽  
A. Viola

Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.


Sign in / Sign up

Export Citation Format

Share Document