Towards Securing Low-Power Digital Circuits with Ultra-Low-Voltage Vdd Randomizers

Author(s):  
Dina Kamel ◽  
Guerric de Streel ◽  
Santos Merino Del Pozo ◽  
Kashif Nawaz ◽  
François-Xavier Standaert ◽  
...  
1994 ◽  
Vol 29 (5) ◽  
pp. 572-579 ◽  
Author(s):  
S.S. Rofail

2000 ◽  
Vol 35 (7) ◽  
pp. 1051-1054 ◽  
Author(s):  
G. Schuppener ◽  
C. Pala ◽  
M. Mokhtari

2019 ◽  
Vol 14 (11) ◽  
pp. 1512-1522 ◽  
Author(s):  
Seyedehsomayeh Hatefinasab

Scaling down the size of transistor in the nanoscale reduces the power supply voltage, as a result, the design of high-performance nano-circuit at low voltage has been considered. Most of digital circuits are composed of different components which determine the performance of the entire digital circuits. With the improvement of these components, the digital circuits can be optimized. One of these components is full adder for which various structures have been proposed to improve its performance, among them the two novel full adder structures are based on Gate-Diffusion Input (GDI) structure and half-classical XOR/XNOR logic (SEMI XOR/XNOR) modules. In this paper, Carbon Nanotube Field Effect Transistor (CNTFET)-based low power full adders by using SEMI XOR logic style and GDI structure are presented. Due to the incomparable thermal and mechanical properties of the CNTFET, it can be the first alternative to substitute the metal oxide field effect transistors (MOSFET). The digital circuits have the better performance based on CNTFET. Therefore, the three proposed full adders in this paper are designed based on CNTFET technology with many merits, such as low power dissipation, less energy delay product (EDP), and high speed at various supply voltages, frequencies, temperatures, load capacitors, and the number of tubes. Moreover, these proposed full adders occupy the minimum area consumption and have better performance in comparison with previous standard full adders. All simulations are done by using the Synopsys HSPICE simulator in 32 nm-CNTFET technology and layout of all full adder circuits are presented on Electric.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


2014 ◽  
Vol 23 (08) ◽  
pp. 1450108 ◽  
Author(s):  
VANDANA NIRANJAN ◽  
ASHWANI KUMAR ◽  
SHAIL BALA JAIN

In this work, a new composite transistor cell using dynamic body bias technique is proposed. This cell is based on self cascode topology. The key attractive feature of the proposed cell is that body effect is utilized to realize asymmetric threshold voltage self cascode structure. The proposed cell has nearly four times higher output impedance than its conventional version. Dynamic body bias technique increases the intrinsic gain of the proposed cell by 11.17 dB. Analytical formulation for output impedance and intrinsic gain parameters of the proposed cell has been derived using small signal analysis. The proposed cell can operate at low power supply voltage of 1 V and consumes merely 43.1 nW. PSpice simulation results using 180 nm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC) are included to prove the unique results. The proposed cell could constitute an efficient analog Very Large Scale Integration (VLSI) cell library in the design of high gain analog integrated circuits and is particularly interesting for biomedical and instrumentation applications requiring low-voltage low-power operation capability where the processing signal frequency is very low.


2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.


Sign in / Sign up

Export Citation Format

Share Document