Indian Biofuel Progress, GHG Emission and GHG Savings by Biofuels: Comparative Assessment with World

Author(s):  
Alok Satlewal ◽  
Jitendra K. Saini ◽  
Ruchi Agrawal ◽  
Anshu Mathur ◽  
Deepak K. Tuli ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 529
Author(s):  
Asta Mikalauskiene ◽  
Justas Štreimikis ◽  
Ignas Mikalauskas ◽  
Gintarė Stankūnienė ◽  
Rimantas Dapkus

The paper performed comparative assessment of greenhouse gas (GHG) emission trends and climate change mitigation policies in the fuel combustion sector of selected EU member states with similar economic development levels and historical pasts, and implementing main EU energy and climate change mitigation policies, having achieved different success in GHG emission reduction. The impact of climate change mitigation policies on GHG emission reduction was assessed based on analysis of countries’ reports to UNFCCC by identifying the key areas of GHG emission reduction, their GHG emission reduction potential, and the driving forces behind them. The study revealed that climate change mitigation policies that have been implemented so far in Bulgaria are less efficient than in Lithuania, as Bulgaria places priorities not on energy efficiency improvement and penetration of renewable energy sources, but on switching from coal to natural gas. The policy implications for strengthening GHG emissions reduction efforts are provided based on analysis conducted.


2020 ◽  
Vol 12 (22) ◽  
pp. 9618
Author(s):  
Željko Jurić ◽  
Davor Ljubas

Making organizations aware of their carbon footprint (CF) and proposing measures to reduce it are important segments of climate change mitigation. As a part of this process, an enhanced Bilan Carbone model with incorporated country-specific greenhouse gas (GHG) emission factors was applied for CF calculations of three organizations (Agency, Faculty, and Institute). The model, fully in line with international CF calculation standards, can be applied to calculate the CF of any organization on the global level. The paper provides a comparative assessment of CFs of considered organizations and preconditions for a reliable comparison. The calculated CFs values for 2017 were 513.4 t CO2 e for the Agency, 4254.7 t CO2 e for the Faculty, and 477.0 t CO2 e for the Institute. Comparing specific CF, the Faculty had the highest value per employee (9.4 t CO2 e/employee) and the lowest value per heated area (131 kg CO2 e/m2), followed by the Institute (5.4 t CO2 e/employee and 222 kg CO2 e/m2) and the Agency (4.5 t CO2 e/employee and 294 kg CO2 e/m2). Using the enhanced Bilan Carbone model, adapted to national conditions, could lead to the harmonization of the organizations’ CF calculation and enable the identification of significant emission sources. This will facilitate the definition of GHG reduction targets and the identification of mitigation measures for achieving the targets, as presented in the example of the Institute.


Resources ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 78
Author(s):  
Carla Silva

A wastewater treatment plant (WWTP) can be considered a system where dirty water enters and fresh water (by means of treatment processes) and other co-products such as sludge and biogas exit. Inside the system, typically, the following steps occur: preliminary treatment, primary treatment, secondary treatment, tertiary treatment, disinfection, and solids handling. The system transforms biomass into several energy and non-energy products, which fall into the definition of a biorefinery. This research compares three simulated WWTP in terms of their environmental greenhouse gas (GHG) emission release to the atmosphere: a generic one (without co-product valorization), one that converts co-products into fertilizer, heat, and electricity, and a third one that converts co-products into heat, electricity, fertilizer, and bioplastic. Heat and electricity are used to provide its energy needs. The chosen impact category is GHG, and the aim is to project the best scenario to the European context in terms of GHG avoidance (savings). The scope is the upstream electricity and natural gas production, the in-use emissions, and the avoided emissions by substituting equivalent fossil-based products. The functional unit is 1 L of sewage (“dirty water”). The GHG savings are evaluated by comparing a generic WWTP scenario, without co-product valorization, with alternative scenarios of co-product valorization. Conventional LCA assuming all the emissions occurs at instant zero is compared to a more realistic environment where for each year, the average of the variable emission pulses occurs. Variable emissions pulses are taken from variable inflows data publicly available from European COST actions (COST Action 682 “Integrated Wastewater Management” as well as within the first IAWQ (later IWA) Task Group on respirometry-based control of the activated sludge process), within the later COST Action 624 on “Optimal Management of Wastewater Systems”). The GHG uncertainty is estimated based on the inputs benchmark data from the WWTP literature and by having different available global warming potential dynamic models. The conventional LCA versus dynamic LCA approach is discussed especially because a WWTP is by nature a dynamic system, having variable inputs along time and therefore variable output GHG emission pulses. It is concluded that heat needs are fully covered by biogas production in the anaerobic digester and combustion, covering its own energy needs and with a potential for heat district supply. Only 30–40% of electricity needs are covered by combined heat and power. Bioplastics and/or fertilizer yields potentially represent less than 3% of current European needs, which suggests the need to reduce their consumption levels. In comparison to generic WWTP, GHG savings are 20%, considering the uncertainty in the benchmark input assumptions. The former is much higher than the uncertainty in the dynamic global warming potential model selection, which means that the model selection is not important in this case study.


2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


2020 ◽  
pp. 51-74
Author(s):  
I. A. Bashmakov

The article presents the key results of scenario projections that underpinned the Strategy for long-term low carbon economic development of the Russian Federation to 2050, including analysis of potential Russia’s GHG emission mitigation commitments to 2050 and assessment of relevant costs, benefits, and implications for Russia’s GDP. Low carbon transformation of the Russian economy is presented as a potential driver for economic growth that offers trillions-of-dollars-worth market niches for low carbon products by mid-21st century. Transition to low carbon economic growth is irreversible. Lagging behind in this technological race entails a security risk and technological backwardness hazards.


2014 ◽  
pp. 70-91 ◽  
Author(s):  
I. Bashmakov ◽  
A. Myshak

This paper investigates costs and benefits associated with low-carbon economic development pathways realization to the mid XXI century. 30 scenarios covering practically all “visions of the future” were developed by several research groups based on scenario assumptions agreed upon in advance. It is shown that with a very high probability Russian energy-related GHG emissions will reach the peak before 2050, which will be at least 11% below the 1990 emission level. The height of the peak depends on portfolio of GHG emissions mitigation measures. Efforts to keep 2050 GHG emissions 25-30% below the 1990 level bring no GDP losses. GDP impact of deep GHG emission reduction - by 50% of the 1990 level - varies from plus 4% to minus 9%. Finally, very deep GHG emission reduction - by 80% - may bring GDP losses of over 10%.


2018 ◽  
Vol 13 (Number 1) ◽  
pp. 55-67
Author(s):  
Shafini M. Shafie ◽  
Zakirah Othman ◽  
N Hami

Malaysia has an abundance of biomass resources that can be utilised for power generation. One of them is paddy residue. Paddy residue creates ahuge potential in the power generation sector. The consumption of paddy residue can help Malaysia become less dependent on conventional sources of energy, mitigate greenhouse gas(GHG) emission, offer positive feedback in the economic sector, and at the same time, provide thebest solution for waste management activities. The forecast datafor 20 years on electricity generation wasused to calculate the GHG emission and its saving when paddy residue is used for electricity generation. The government’scost saving was also identified when paddy residue substituted coal fuel in electricity generation.This paper can provide forecast information so that Malaysia is able to move forward to apply paddy residue as feedstock in energy supply. Hopefully, the data achieved can encourage stakeholder bodies in the implementation of paddy residue inelectricity generation since there is apositive impact towardscost and emission saving.


2016 ◽  
Vol 39 ◽  
pp. 47-50
Author(s):  
Tiziano Venturini ◽  
Emanuele Trefolini ◽  
Edeardo Patelli ◽  
Matteo Broggi ◽  
Giacomo Tuliani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document