scholarly journals ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation

Author(s):  
Vernadeth B. Alarcon ◽  
Yusuke Marikawa
Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1895 ◽  
Author(s):  
Sepideh Fallah ◽  
Jean-François Beaulieu

The human intestine is covered by epithelium, which is continuously replaced by new cells provided by stem cells located at the bottom of the glands. The maintenance of intestinal stem cells is supported by a niche which is composed of several signaling proteins including the Hippo pathway effectors YAP1/TAZ. The role of YAP1/TAZ in cell proliferation and regeneration is well documented but their involvement on the differentiation of intestinal epithelial cells is unclear. In the present study, the role of YAP1/TAZ on the differentiation of intestinal epithelial cells was investigated using the HT29 cell line, the only multipotent intestinal cell line available, with a combination of knockdown approaches. The expression of intestinal differentiation cell markers was tested by qPCR, Western blot, indirect immunofluorescence and electron microscopy analyses. The results show that TAZ is not expressed while the abolition of YAP1 expression led to a sharp increase in goblet and absorptive cell differentiation and reduction of some stem cell markers. Further studies using double knockdown experiments revealed that most of these effects resulting from YAP1 abolition are mediated by CDX2, a key intestinal cell transcription factor. In conclusion, our results indicate that YAP1/TAZ negatively regulate the differentiation of intestinal epithelial cells through the inhibition of CDX2 expression.


Development ◽  
1988 ◽  
Vol 102 (2) ◽  
pp. 271-278
Author(s):  
E. Houliston ◽  
M.N. Guilly ◽  
J.C. Courvalin ◽  
B. Maro

The expression of nuclear lamins during mouse preimplantation development was studied by immunofluorescence, immunoblotting and immunoprecipitation. Two sera were used, specific either for lamin B or lamins A and C. Both sera gave a positive staining of the nuclear periphery throughout preimplantation development (fertilized eggs to late blastocysts). Immunoblots revealed that the three lamins were present in eggs and blastocysts. However, lamin A from eggs was found to have a higher apparent Mr than lamin A from blastocysts and other mouse cells. Using immunoprecipitation, synthesis of lamin A was detected in eggs while synthesis of lamin B was detected in 8-cell embryos and blastocysts, indicating that at least some of the lamins used during early development do not come from a store in the egg. These results are discussed in relation to the possible role of lamins during cell differentiation.


2017 ◽  
Vol 117 (01) ◽  
pp. 116-126 ◽  
Author(s):  
Chanchao Lorthongpanich ◽  
Nittaya Jiamvoraphong ◽  
Kantpitchar Supraditaporn ◽  
Phatchanat Klaihmon ◽  
Yaowalak U-pratya ◽  
...  

SummaryThe Hippo pathway is involved in several biological processes in both flies and mammals. Recent studies have shown that the Hippo pathway regulates Drosophila’s haematopoiesis; however, understanding of its role in mammalian haematopoiesis is still limited. In flies, deletion of the Hippo component gene, Warts, affects crystal cell differentiation. We explored the role of the Hippo pathway in human haemato-poiesis focusing on megakaryopoiesis. To investigate the role of LATS1/2 (a mammalian homolog of Warts) in human megakaryo -blastic cell differentiation and platelet formation, megakaryoblastic cell (MEG-01) line was used as a model to gain insight into mechan-ism of the Hippo pathway in mammalian megakaryopoiesis. Effect of LATS1/2 on megakaryoblastic cell differentiation and platelet production were determined by functional changes. We found that depletion of LATS1/2 resulted in an increase of CD41+ megakaryocytes with impaired platelet biogenesis. Our study shows that the Hippo signalling pathway plays a crucial role in human megakaryoblastic cell differentiation and thrombopoiesis.Supplementary Material to this article is available online at www.thrombosis-online.com.


2019 ◽  
Author(s):  
Panpan Zhao ◽  
Huanan Wang ◽  
Han Wang ◽  
Yanna Dang ◽  
Lei Luo ◽  
...  

AbstractEpigenetic modifications, including DNA methylation and histone modifications, are reprogrammed considerably following fertilization during mammalian early embryonic development. Incomplete epigenetic reprogramming is a major factor leading to poor developmental outcome in embryos generated by assisted reproductive technologies, such as somatic cell nuclear transfer. However, the role of histone modifications in preimplantation development is poorly understood. Here, we show that co-knockdown (cKD) of Hdac1 and 2 (but not individually) resulted in developmental failure during the morula to blastocyst transition. This outcome was also confirmed with the use of small-molecule Hdac1/2-specific inhibitor FK228. We observed reduced cell proliferation and increased incidence of apoptosis in cKD embryos, which were likely caused by increased acetylation of Trp53. Importantly, both RNA-seq and immunostaining analysis revealed a failure of lineage specification to generate trophectoderm and pluripotent cells. Among many gene expression changes, a substantial decrease of Cdx2 may be partly accounted for by the aberrant Hippo pathway occurring in cKD embryos. In addition, we observed an increase in global DNA methylation, consistent with increased DNA methyltransferases and Uhrf1. Interestingly, deficiency of Rbbp4 and 7 (both are core components of several Hdac1/2-containing epigenetic complexes) results in similar phenotypes as those of cKD embryos. Overall, Hdac1 and 2 play redundant functions required for lineage specification, cell viability and accurate global DNA methylation, each contributing to critical developmental programs safeguarding a successful preimplantation development.SignificanceSubstantial changes to epigenetic modifications occur during preimplantation development and can be detrimental when reprogrammed incompletely. However, little is known about the role of histone modifications in early development. Co-knockdown of Hdac1 and 2, but not individually, resulted in developmental arrest during morula to blastocyst transition, which was accompanied by reduced cell number per embryo and increased incidence of apoptosis. Additionally, we observed a failure of first lineage specification to generate trophectoderm and pluripotent cells, which were associated with reduced expression of key lineage-specific genes and aberrant Hippo pathway. Moreover, an increase in global DNA methylation was found with upregulated Dnmts and Uhrf1. Thus, Hdac1 and 2 play overlapping roles in lineage development, apoptosis, and global methylation during preimplantation development.


PLoS ONE ◽  
2008 ◽  
Vol 3 (3) ◽  
pp. e1761 ◽  
Author(s):  
Jianzhong Yu ◽  
John Poulton ◽  
Yi-Chun Huang ◽  
Wu-Min Deng

Development ◽  
2020 ◽  
Vol 147 (19) ◽  
pp. dev189449 ◽  
Author(s):  
Christophe Royer ◽  
Karolis Leonavicius ◽  
Annemarie Kip ◽  
Deborah Fortin ◽  
Kirtirupa Nandi ◽  
...  

ABSTRACTPrecise patterning within the three-dimensional context of tissues, organs and embryos implies that cells can sense their relative position. During preimplantation development, outside and inside cells rely on apicobasal polarity and the Hippo pathway to choose their fate. Despite recent findings suggesting that mechanosensing might be central to this process, the relationship between blastomere geometry (i.e. shape and position) and the Hippo pathway effector YAP remains unknown. We used a highly quantitative approach to analyse information on the geometry and YAP localisation of individual blastomeres of mouse and human embryos. We identified the proportion of exposed cell surface area as most closely correlating with the nuclear localisation of YAP. To test this relationship, we developed several hydrogel-based approaches to alter blastomere geometry in cultured embryos. Unbiased clustering analyses of blastomeres from such embryos revealed that this relationship emerged during compaction. Our results therefore pinpoint the time during early embryogenesis when cells acquire the ability to sense changes in geometry and provide a new framework for how cells might integrate signals from different membrane domains to assess their relative position within the embryo.


Author(s):  
H. Alasam

The possibility that intrathymic T-cell differentiation involves stem cell-lymphoid interactions in embryos led us to study the ultrastructure of epithelial cell in normal embryonic thymus. Studies in adult thymus showed that it produces several peptides that induce T-cell differentiation. Several of them have been chemically characterized, such as thymosin α 1, thymopoietin, thymic humoral factor or the serum thymic factor. It was suggested that most of these factors are secreted by populations of A and B-epithelial cells.Embryonic materials were obtained from inbred matings of Swiss Albino mice. Thymuses were disected from embryos 17 days old and prepared for transmission electron microscopy. Our studies showed that embryonic thymus at this stage contains undifferentiated and differentiated epithelial cells, large lymphoblasts, medium and few small lymphocytes (Fig. 5). No differences were found between cortical and medullary epithelial cells, in contrast to the findings of Van Vliet et al,. Epithelial cells were mostly of the A-type with low electron density in both cytoplasm and nucleus. However few B-type with high electron density were also found (Fig. 7).


Sign in / Sign up

Export Citation Format

Share Document