Developing an Understanding of the Cost of Additive Manufacturing

Author(s):  
Martin Baumers ◽  
Chris Tuck
2021 ◽  
Vol 412 ◽  
pp. 207-216
Author(s):  
A.S. Guimarães ◽  
J.M.P.Q. Delgado ◽  
S.S. Lucas

The future of construction will be directly connected with additive manufacturing (AM). It is easy to see the lack of consistency between jobs, labour inefficiency, schedule delays, delays on material delivery, exceeding budget projections and high percentage of material waste. Over the years, additive manufacturing has been a constant topic of discussion, in order to understand the limitations, applications and the overall impact on the cost of construction. In this work it is intended to present/discuss opportunities and challenges and the potential of AM to revolutionize the industry.


2020 ◽  
Vol 22 (2) ◽  
pp. 123
Author(s):  
T. Dmitriyev ◽  
S. Manakov

Products obtained by metal additive manufacturing have exceptional strength properties that can be compared with forged parts, and in some cases, even surpass them. Also, the cost and time of parts manufacture are reduced by two or even three times. Because of this, today’s leading corporations in the field of aerospace industry introducing this technology to its production. To avoid loss of funds and time, the processes of additive manufacturing should be predictable. Simufact Additive is specialized software for additive manufacturing process simulation is dedicated to solving critical issues with metal 3D printing, including significantly reducing distortion; minimize residual stress to avoid failures; optimize the build-up orientation and the support structures. It also enables us to compare simulated parts with the printed sample or measure it as a reference. In other words, the simulated deformations can be estimated concerning the reference geometry. The current work aims to study the deformation of the sample during the Direct Metal Laser Sintering (DMLS) process made from Maraging Steel MS1. Simufact Additive software was used to simulate the printing process. The main idea is to compare the results of the simulation and the real model. EOS M290 metal 3D printer was used to make a test specimen.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1391
Author(s):  
Leila Ladani ◽  
Maryam Sadeghilaridjani

Additive manufacturing (AM) as a disruptive technology has received much attention in recent years. In practice, however, much effort is focused on the AM of polymers. It is comparatively more expensive and more challenging to additively manufacture metallic parts due to their high temperature, the cost of producing powders, and capital outlays for metal additive manufacturing equipment. The main technology currently used by numerous companies in the aerospace and biomedical sectors to fabricate metallic parts is powder bed technology, in which either electron or laser beams are used to melt and fuse the powder particles line by line to make a three-dimensional part. Since this technology is new and also sought by manufacturers, many scientific questions have arisen that need to be answered. This manuscript gives an introduction to the technology and common materials and applications. Furthermore, the microstructure and quality of parts made using powder bed technology for several materials that are commonly fabricated using this technology are reviewed and the effects of several process parameters investigated in the literature are examined. New advances in fabricating highly conductive metals such as copper and aluminum are discussed and potential for future improvements is explored.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahyar Khorasani ◽  
AmirHossein Ghasemi ◽  
Bernard Rolfe ◽  
Ian Gibson

Purpose Additive manufacturing (AM) offers potential solutions when conventional manufacturing reaches its technological limits. These include a high degree of design freedom, lightweight design, functional integration and rapid prototyping. In this paper, the authors show how AM can be implemented not only for prototyping but also production using different optimization approaches in design including topology optimization, support optimization and selection of part orientation and part consolidation. This paper aims to present how AM can reduce the production cost of complex components such as jet engine air manifold by optimizing the design. This case study also identifies a detailed feasibility analysis of the cost model for an air manifold of an Airbus jet engine using various strategies, such as computer numerical control machining, printing with standard support structures and support optimization. Design/methodology/approach Parameters that affect the production price of the air manifold such as machining, printing (process), feedstock, labor and post-processing costs were calculated and compared to find the best manufacturing strategy. Findings Results showed that AM can solve a range of problems and improve production by customization, rapid prototyping and geometrical freedom. This case study showed that 49%–58% of the cost is related to pre- and post-processing when using laser-based powder bed fusion to produce the air manifold. However, the cost of pre- and post-processing when using machining is 32%–35% of the total production costs. The results of this research can assist successful enterprises, such as aerospace, automotive and medical, in successfully turning toward AM technology. Originality/value Important factors such as validity, feasibility and limitations, pre-processing and monitoring, are discussed to show how a process chain can be controlled and run efficiently. Reproducibility of the process chain is debated to ensure the quality of mass production lines. Post-processing and qualification of the AM parts are also discussed to show how to satisfy the demands on standards (for surface quality and dimensional accuracy), safety, quality and certification. The original contribution of this paper is identifying the main production costs of complex components using both conventional and AM.


2021 ◽  
Vol 1161 ◽  
pp. 137-144
Author(s):  
Jonas Holtmann ◽  
Denis Kiefel ◽  
Stefan Neumann ◽  
Rainer Stoessel ◽  
Christian U. Grosse

Process monitoring in additive manufacturing (AM), i.e. in laser powder bed fusion (LPBF) of metal parts, has been identified as the crucial bottleneck in accelerating the AM industrialization process. To reduce the cost and time needed to produce and qualify an AM part, an online monitoring system of the manufacturing process is desirable. While the currently available systems capture a large amount of process data, they still lack the ability to interpret the acquired data adequately. In this work we present the first steps towards an automated evaluation of online monitoring data i.e. melt pool data. It is shown that a well-trained convolutional neural network (CNN) is able to detect artificially induced process deviations on the basis of melt pool characteristics.


2016 ◽  
Vol 106 (05) ◽  
pp. 354-359
Author(s):  
M. Mottahedi ◽  
P. Zahn ◽  
A. Lechler ◽  
A, Prof. Verl

Topologisch optimierte Bauteile gestatten maximale Steifigkeit bei minimalem Materialeinsatz. Für die Erzeugung solcher Topologien werden meist Algorithmen eingesetzt, die Fertigungseinschränkungen auf Kosten von optimalen Ergebnissen berücksichtigen und keine variablen Materialdichten zulassen. Dieser Fachartikel stellt ein additives Herstellungsverfahren zur Fertigung global optimaler Topologien vor. Als Ergebnis können mittels der ausgewählten Algorithmen Bauteile mit höherer Steifigkeit hergestellt werden.   The optimal topology of components leads to maximum stiffness with minimum material use. To generate these topologies, normally algorithms are employed that tackle manufacturing limitations at the cost of the optimum. This article introduces an additive manufacturing method to enable the production of global topology optimization results. The findings show that by implementing the selected algorithm the stiffness of the components are higher than what could have been produced by conventional techniques.


Author(s):  
Samuel Magalhães ◽  
Manuel Sardinha ◽  
Carlos Vicente ◽  
Marco Leite ◽  
Relógio Ribeiro ◽  
...  

Additive manufacturing technologies are becoming increasingly popular due to their advantages over traditional subtracting manufacturing technologies. Despite advances in this field, fixed and maintenance costs for additive manufacturing with metals remain high. The introduction of low-cost metal machines in the additive manufacturing market considerably reduces the cost of acquiring and maintaining this type of equipment. This work aims to establish the process requirements for a low-cost selective powder deposition process, and validate it through the production of specimens in the laboratory and evaluate their mechanical properties. Tin bronze specimens were produced under different manufacturing conditions, namely powder dimensions, type of crucible and coke, firing segments and casting strategy. The morphology and chemical composition of the specimens were carried out combining the scanning electron microscopy and energy dispersive X-Ray spectroscopy techniques, respectively. It was observed that crucibles and coke with impurities that react with the metal powders and infill in a reducing atmosphere have influence in the final quality of parts. Tested samples displayed high variability of results which can be correlated with different manufacturing conditions. The selection of the appropriate print parameters led to the manufacture of tin bronze specimens with mechanical properties comparable to those reported in the literature. Overall, low-cost selective powder deposition is a promising technology, if identified manufacturing issues are addressed.


Author(s):  
Neeraj Panhalkar ◽  
Ratnadeep Paul ◽  
Sam Anand

Additive Manufacturing (AM) based Printed Electronics (PE) is an emerging technique where electronic components and interconnects are printed directly on substrates using a layered technique. The direct printing of the electronic components allows large scale and ultra-thin components to be printed on a wide variety of substrates including glass, silicon and plastic. These attributes make AM based Printed Electronics an invaluable manufacturing technique in the area of electronic sensors and sensor networks where thin, flexible and rugged form factors are very important. However, currently this technology is a labor intensive and manual process with the machine operator using his experience and judgment to slice the CAD file of the part to create 2D layers at different levels. This manual process increases the overall production time as well as the cost of the product and also results in inconsistent quality of parts. A major challenge faced by existing AM based Printed Electronics users for automating this process is the lack of a standard input file format that can be used by different PE machines for producing the components in layers. To leverage the capabilities of both AM and PE processes, a new file format based on the Constructive Solid Geometry (CSG) technique is proposed in this research paper. This file format data will not only include CAD data in the form of CSG primitives and Boolean representation but will also include manufacturing information related to the AM based PE process. The manufacturing information embedded within this new format will include data about the location of the different electronic components such as interconnects, resistors, capacitors, inductors, transistors, memory and substrate, and the materials required for the different components part. Different circuit board components will be represented as primitives or a combination of primitives obtained using CSG technique. In addition to the new file format, a slicing algorithm will also be developed which can be used to create the layers automatically using user inputs. The proposed file format and the slicing algorithm will be explained with the help of a case study.


2020 ◽  
Vol 321 ◽  
pp. 03011
Author(s):  
Saden H. Zahiri ◽  
Stefan Gulizia ◽  
Leon Prentice

The difficulty in significantly reducing the cost of titanium products is partly related to the high cost of manufacturing. This includes additive manufacturing; e.g. Electron Beam Melting (EBM) and Selective Laser Melting (SLM), as well as traditional approaches that are based on a melting process. In particular, the cost of titanium powder has placed limits on the application of additive manufacturing approaches that involve melting to broader commercial applications beyond military, aerospace and implants. More than a decade ago, Australia adopted cold spray technology as a meltless additive manufacturing technique to fabricate titanium through a strategic initiative at Commonwealth Scientific and Industrial Research Organisation (CSIRO). The high deposition rate, ~100 times faster than the other additive technologies, and the solid state deposition were amongst the rationales for investment in cold spray technology. A combination of carefully designed experiments and sophisticated 3D models were developed to assess performance of the current industrial-scale cold spray systems for commercial clients. The success and challenges of this solid state deposition technology will be detailed with a focus on real industrial impact. The future development of melt-less titanium manufacturing using cold spray will be discussed with consideration of commercial and environmental benefits.


Sign in / Sign up

Export Citation Format

Share Document