scholarly journals Colias IV: The Affordable Micro Robot Platform with Bio-inspired Vision

Author(s):  
Cheng Hu ◽  
Qinbing Fu ◽  
Shigang Yue
Keyword(s):  
ROBOT ◽  
2010 ◽  
Vol 32 (4) ◽  
pp. 529-533
Author(s):  
Pengfei WANG ◽  
Jianshan XIAO ◽  
Mantian LI ◽  
Lining SUN

ROBOT ◽  
2010 ◽  
Vol 32 (2) ◽  
pp. 262-270 ◽  
Author(s):  
Yudong SU ◽  
Xiufen YE ◽  
Shuxiang GUO
Keyword(s):  

Author(s):  
Aaron T. O’Toole ◽  
Stephen L. Canfield

Skid steer tracked-based robots are popular due to their mechanical simplicity, zero-turning radius and greater traction. This architecture also has several advantages when employed by mobile platforms designed to climb and navigate ferrous surfaces, such as increased magnet density and low profile (center of gravity). However, creating a kinematic model for localization and motion control of this architecture is complicated due to the fact that tracks necessarily slip and do not roll. Such a model could be based on a heuristic representation, an experimentally-based characterization or a probabilistic form. This paper will extend an experimentally-based kinematic equivalence model to a climbing, track-based robot platform. The model will be adapted to account for the unique mobility characteristics associated with climbing. The accuracy of the model will be evaluated in several representative tasks. Application of this model to a climbing mobile robotic welding system (MRWS) is presented.


Author(s):  
Jonathan Tapia ◽  
Eric Wineman ◽  
Patrick Benavidez ◽  
Aldo Jaimes ◽  
Ethan Cobb ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1800
Author(s):  
Linfei Hou ◽  
Fengyu Zhou ◽  
Kiwan Kim ◽  
Liang Zhang

The four-wheeled Mecanum robot is widely used in various industries due to its maneuverability and strong load capacity, which is suitable for performing precise transportation tasks in a narrow environment. While the Mecanum wheel robot has mobility, it also consumes more energy than ordinary robots. The power consumed by the Mecanum wheel mobile robot varies enormously depending on their operating regimes and environments. Therefore, only knowing the working environment of the robot and the accurate power consumption model can we accurately predict the power consumption of the robot. In order to increase the applicable scenarios of energy consumption modeling for Mecanum wheel robots and improve the accuracy of energy consumption modeling, this paper focuses on various factors that affect the energy consumption of the Mecanum wheel robot, such as motor temperature, terrain, the center of gravity position, etc. The model is derived from the kinematic and kinetic model combined with electrical engineering and energy flow principles. The model has been simulated in MATLAB and experimentally validated with the four-wheeled Mecanum robot platform in our lab. Experimental results show that the accuracy of the model reached 95%. The results of energy consumption modeling can help robots save energy by helping them to perform rational path planning and task planning.


Author(s):  
Chuan Qu ◽  
Yong-Chen Pei ◽  
Qing-Yuan Xin ◽  
Zhen-Xing Li ◽  
Long Xu

Magnetic-based driving applications are receiving increasing attention. This study proposed a novel reciprocating permanent magnetic actuator (PMA) to manipulate magnetic micro robots to impact and clear blockages inside fluid pipes in a linear path. The PMA consisted of a cylindrical permanent magnet and a crank slider structure. A straight pipe with a circular cross-sectional area was located in front of the actuator to study the driving performance of PMA. A micro permanent magnet with a cylinder shape was employed as a working robot for manipulation inside the pipe. Firstly, analytical formulas were derived to obtain the magnetic driving force acting on the micro robot and determine the most suitable magnet configuration. The finite element simulation verified the analytical calculation. The developed reciprocating PMA prototype was then introduced, and the PMA and micro robot’s motion performance was analysed. Lastly, preliminary experiments were carried out for evaluating the micro robot’s motion characteristics. Performance tests for different excitation frequencies, flow rates, viscosities, and axial distances, indicating that PMA could manipulate the magnetic micro robot inside the pipe. The results confirmed that the developed PMA could effectively drive the micro robot with the advantage of consecutive magnetic driving. Especially, the micro robot featured good flexibility, rapid response, and a simple structure, suggesting that this micro robot may play an important role in industrial and medical applications, such as blockage elimination and thrombus clearance.


2011 ◽  
Vol 403-408 ◽  
pp. 5053-5060 ◽  
Author(s):  
Mostafa Ghayour ◽  
Amir Zareei

In this paper, an appropriate mechanism for a hexapod spider-like mobile robot is introduced. Then regarding the motion of this kind of robot which is inspired from insects, direct kinematics of position and velocity of the centre of gravity (C.G.) of the body and noncontact legs are analysed. By planning and supposing a specific time variation for each joint variable, location and velocity of the C.G. of the robot platform and angular velocity of the body are obtained and the results are shown and analysed.


Sign in / Sign up

Export Citation Format

Share Document