scholarly journals The Euler-Lagrange Equation for Interpolating Sequence of Landmark Datasets

Author(s):  
Mirza Faisal Beg ◽  
Michael Miller ◽  
Alain Trouvé ◽  
Laurent Younes
2019 ◽  
Vol 2019 (1) ◽  
pp. 95-98
Author(s):  
Hans Jakob Rivertz

In this paper we give a new method to find a grayscale image from a color image. The idea is that the structure tensors of the grayscale image and the color image should be as equal as possible. This is measured by the energy of the tensor differences. We deduce an Euler-Lagrange equation and a second variational inequality. The second variational inequality is remarkably simple in its form. Our equation does not involve several steps, such as finding a gradient first and then integrating it. We show that if a color image is at least two times continuous differentiable, the resulting grayscale image is not necessarily two times continuous differentiable.


2014 ◽  
Vol 5 (3) ◽  
pp. 871-981 ◽  
Author(s):  
Pang Xiao Feng

We establish the nonlinear quantum mechanics due to difficulties and problems of original quantum mechanics, in which microscopic particles have only a wave feature, not corpuscle feature, which are completely not consistent with experimental results and traditional concept of particle. In this theory the microscopic particles are no longer a wave, but localized and have a wave-corpuscle duality, which are represented by the following facts, the solutions of dynamic equation describing the particles have a wave-corpuscle duality, namely it consists of a mass center with constant size and carrier wave, is localized and stable and has a determinant mass, momentum and energy, which obey also generally conservation laws of motion, their motions meet both the Hamilton equation, Euler-Lagrange equation and Newton-type equation, their collision satisfies also the classical rule of collision of macroscopic particles, the uncertainty of their position and momentum is denoted by the minimum principle of uncertainty. Meanwhile the microscopic particles in this theory can both propagate in solitary wave with certain frequency and amplitude and generate reflection and transmission at the interfaces, thus they have also a wave feature, which but are different from linear and KdV solitary wave’s. Therefore the nonlinear quantum mechanics changes thoroughly the natures of microscopic particles due to the nonlinear interactions. In this investigation we gave systematically and completely the distinctions and variations between linear and nonlinear quantum mechanics, including the significances and representations of wave function and mechanical quantities, superposition principle of wave function, property of microscopic particle, eigenvalue problem, uncertainty relation and the methods solving the dynamic equations, from which we found nonlinear quantum mechanics is fully new and different from linear quantum mechanics. Finally, we verify further the correctness of properties of microscopic particles described by nonlinear quantum mechanics using the experimental results of light soliton in fiber and water soliton, which are described by same nonlinear Schrödinger equation. Thus we affirm that nonlinear quantum mechanics is correct and useful, it can be used to study the real properties of microscopic particles in physical systems.


Author(s):  
Peter Mann

This chapter discusses virtual work, returning to the Newtonian framework to derive the central Lagrange equation, using d’Alembert’s principle. It starts off with a discussion of generalised force, applied force and constraint force. Holonomic constraints and non-holonomic constraint equations are then investigated. The corresponding principles of Gauss (Gauss’s least constraint) and Jourdain are also documented and compared to d’Alembert’s approach before being generalised into the Mangeron–Deleanu principle. Kane’s equations are derived from Jourdain’s principle. The chapter closes with a detailed covering of the Gibbs–Appell equations as the most general equations in classical mechanics. Their reduction to Hamilton’s principle is examined and they are used to derive the Euler equations for rigid bodies. The chapter also discusses Hertz’s least curvature, the Gibbs function and Euler equations.


2021 ◽  
pp. 1-25
Author(s):  
L. Tiegang ◽  
C. Guoguang ◽  
L. Shuai

ABSTRACT A folding wing is a tactical missile launching device that needs to be miniaturised to facilitate storage, transportation, and launching; save missile and transportation space; and improve the combat capability of weapon systems. This study investigates the aeroelastic characteristics of the secondary longitudinal folding wing during the unfolding process. First, the Lagrange equation is used to establish the structural dynamics model of the folding wing, the kinematics characteristics during the deformation process are analysed, and the unfolding movement of the folding wing is obtained using the dynamic equations in the process. Then, the generalised unsteady aerodynamic force is calculated using the dipole grid method, and the multi-body dynamics equation of the folding wing is obtained. The initial angular velocity required for the deployment of the folding wing is analysed through structural model simulation, and the influence of the initial angular velocity on the opening process is studied. Finally, aeroelastic flutter analysis is performed on the folding wing, and the physical model of the folding wing verified experimentally. Results show that the type of aeroelastic response is sensitive to the initial conditions and the way the folding wing opens.


2004 ◽  
Vol 04 (04) ◽  
pp. 589-598 ◽  
Author(s):  
A. Y. T. LEUNG ◽  
G. R. WU ◽  
W. F. ZHONG

In this paper, the forced vibration of a flexible beam undergoing both global motion and elastic deformation is investigated. The deformation field of the beam is described by its exact linear vibration modes. The coupled nonlinear equation which takes into account the stiffening effect is derived by applying the Lagrange equation for the moving beam. Based on the Newmark direct integration method and the Newton–Raphson iteration method, the computational procedures of the numerical method for solving the nonlinear equation are given. The simulation result of the rotating blade is compared with the others to demonstrate the efficiency of the present method.


1991 ◽  
Vol 12 (8) ◽  
pp. 727-732
Author(s):  
Gao Pu-yun ◽  
Guo Zhong-heng

2014 ◽  
Vol 620 ◽  
pp. 321-329
Author(s):  
Guang Rui Liu ◽  
Wen Bo Zhou ◽  
Rong Fu Liu

In order to study the elastic motion stability of flexible manipulator arm , to compute the maximum dynamic allowable payload , the partial differential equation of elastic motion of the flexible manipulator arm is solved using the method of Laplace transformation , the dynamic model of flexible manipulator arm carried addition mass on its end position is established ,simplified and truncated using Lagrange equation . the state space expression is established with the state variable and control input and output variable designated , the elastic motion stability rule is built upon and simplified using Lyapunov stability theory . The influence of the end position addition mass and articulation rotational inertia of flexible manipulator arm on its elastic motion stability is analyzed using the stability rule , and the dynamic maximum allowable payload of flexible manipulator arm on its end position is computed in order to guarantee its elastic motion stability . this study is important to the design of robot mechanical manipulator and corresponding drive control system .


2010 ◽  
Vol 224 (06) ◽  
pp. 929-934 ◽  
Author(s):  
Herbert W. Zimmermann

AbstractWe consider a substance X with two monotropic modifications 1 and 2 of different thermodynamic stability ΔH1 < ΔH2. Ostwald´s rule states that first of all the instable modification 1 crystallizes on cooling down liquid X, which subsequently turns into the stable modification 2. Numerous examples verify this rule, however what is its reason? Ostwald´s rule can be traced back to the principle of the shortest way. We start with Hamilton´s principle and the Euler-Lagrange equation of classical mechanics and adapt it to thermodynamics. Now the relevant variables are the entropy S, the entropy production P = dS/dt, and the time t. Application of the Lagrangian F(S, P, t) leads us to the geodesic line S(t). The system moves along the geodesic line on the shortest way I from its initial non-equilibrium state i of entropy Si to the final equilibrium state f of entropy Sf. The two modifications 1 and 2 take different ways I1 and I2. According to the principle of the shortest way, I1 < I2 is realized in the first step of crystallization only. Now we consider a supercooled sample of liquid X at a temperature T just below the melting point of 1 and 2. Then the change of entropy ΔS1 = Sf 1 - Si 1 on crystallizing 1 can be related to the corresponding chang of enthalpy by ΔS1 = ΔH1/T. Now it can be shown that the shortest way of crystallization I1 corresponds under special, well-defined conditions to the smallest change of entropy ΔS1 < ΔS2 and thus enthalpy ΔH1 < ΔH2. In other words, the shortest way of crystallization I1 really leads us to the instable modification 1. This is Ostwald´s rule.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Constantin Bota ◽  
Bogdan Cǎruntu ◽  
Mǎdǎlina Sofia Pașca ◽  
Marioara Lǎpǎdat

In this paper an approach for computing an optimal control law based on the Polynomial Least Squares Method (PLSM) is presented. The initial optimal control problem is reformulated as a variational problem whose corresponding Euler-Lagrange equation is solved by using PLSM. A couple of examples emphasize the accuracy of the method.


2014 ◽  
Vol 903 ◽  
pp. 285-290 ◽  
Author(s):  
Hazriq Izzuan Jaafar ◽  
Zaharuddin Mohamed ◽  
Amar Faiz Zainal Abidin ◽  
Zamani Md Sani ◽  
Jasrul Jamani Jamian ◽  
...  

This paper presents development of an optimal PID and PD controllers for controlling the nonlinear Gantry Crane System (GCS). A new method of Binary Particle Swarm Optimization (BPSO) algorithm that uses Priority-based Fitness Scheme is developed to obtain optimal PID and PD parameters. The optimal parameters are tested on the control structure to examine system responses including trolley displacement and payload oscillation. The dynamic model of GCS is derived using Lagrange equation. Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time, steady state error and overshoot. The result not only confirmed the successes of using new method for GCS, but also shows the new method performs more efficiently compared to the continuous PSO. This proposed technique demonstrates that implementation of Priority-based Fitness Scheme in BPSO is effective and able to move the trolley as fast as possible to the desired position with low payload oscillation.


Sign in / Sign up

Export Citation Format

Share Document