Integration of Full-Coverage Probabilistic Functional Networks with Relevance to Specific Biological Processes

Author(s):  
Katherine James ◽  
Anil Wipat ◽  
Jennifer Hallinan
2020 ◽  
Author(s):  
Stefania Marsili ◽  
Ailone Tichon ◽  
Francesca Storici

AbstractRibonuclease H2 (RNase H2) is a key enzyme for the removal of RNA found in DNA-RNA hybrids, playing a fundamental role in biological processes such as DNA replication, telomere maintenance and DNA damage repair. RNase H2 is a trimer composed of three subunits, being RNASEH2A the catalytic subunit. RNASEH2A expression levels have been shown to be upregulated in transformed and cancer cells. In this study we used a bioinformatics approach to identify RNASEH2A co-expressed genes in different human tissues to uncover biological processes in which RNASEH2A is involved. By implementing this approach, we identified functional networks for RNASEH2A that are not only involved in the processes of DNA replication and DNA damage response, but also in cell cycle regulation. Additional examination of protein-protein networks for RNASEH2A by the STRING database analysis, revealed a high co-expression correlation between RNASEH2A and the genes of the protein networks identified. Mass spectrometry analysis of RNASEH2A-bound proteins highlighted players functioning in cell cycle regulation. Further bioinformatics investigation showed increased gene expression of RNASEH2A in different types of actively cycling cells and tissues, and particularly in several cancers, supporting a biological role for RNASEH2A, but not the other two subunits of RNase H2, in cell proliferation.


2021 ◽  
Author(s):  
Dianshuang Zhou ◽  
Xin Li ◽  
Shipeng Shang ◽  
Hui Zhi ◽  
Peng Wang ◽  
...  

Abstract Background: Long noncoding RNAs (LncRNAs) represent a large category of functional RNA molecules that play a significant role in human cancers. lncRNAs can be genes modulators to affect the biological process of multiple cancers.Methods: Here, we developed a computational framework that uses lncRNA-mRNA network and mutations in individual genes of 9 cancers from TCGA to prioritize cancer lncRNA modulators. Our method screened risky cancer lncRNA regulators based on integrated multiple lncRNA functional networks and 3 calculation methods in network. Results: Validation analyses revealed that our method was more effective than prioritization based on a single lncRNA network. This method showed high predictive performance and the highest ROC score was 0.836 in breast cancer. It’s worth noting that we found that 5 lncRNAs scores were abnormally high and these lncRNAs appeared in 9 cancers. By consulting the literatures, these 5 lncRNAs were experimentally supported lncRNAs. Analyses of prioritizing lncRNAs reveal that these lncRNAs are enriched in various cancer-related biological processes and pathways.Conclusions: Together, these results demonstrated the ability of this method identifying candidate lncRNA molecules and improved insights into the pathogenesis of cancer.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 221
Author(s):  
Stefania Marsili ◽  
Ailone Tichon ◽  
Deepali Kundnani ◽  
Francesca Storici

Ribonuclease (RNase) H2 is a key enzyme for the removal of RNA found in DNA-RNA hybrids, playing a fundamental role in biological processes such as DNA replication, telomere maintenance, and DNA damage repair. RNase H2 is a trimer composed of three subunits, RNASEH2A being the catalytic subunit. RNASEH2A expression levels have been shown to be upregulated in transformed and cancer cells. In this study, we used a bioinformatics approach to identify RNASEH2A co-expressed genes in different human tissues to underscore biological processes associated with RNASEH2A expression. Our analysis shows functional networks for RNASEH2A involvement such as DNA replication and DNA damage response and a novel putative functional network of cell cycle regulation. Further bioinformatics investigation showed increased gene expression in different types of actively cycling cells and tissues, particularly in several cancers, supporting a biological role for RNASEH2A but not for the other two subunits of RNase H2 in cell proliferation. Mass spectrometry analysis of RNASEH2A-bound proteins identified players functioning in cell cycle regulation. Additional bioinformatic analysis showed that RNASEH2A correlates with cancer progression and cell cycle related genes in Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) Pan Cancer datasets and supported our mass spectrometry findings.


Author(s):  
Leslie M. Loew

A major application of potentiometric dyes has been the multisite optical recording of electrical activity in excitable systems. After being championed by L.B. Cohen and his colleagues for the past 20 years, the impact of this technology is rapidly being felt and is spreading to an increasing number of neuroscience laboratories. A second class of experiments involves using dyes to image membrane potential distributions in single cells by digital imaging microscopy - a major focus of this lab. These studies usually do not require the temporal resolution of multisite optical recording, being primarily focussed on slow cell biological processes, and therefore can achieve much higher spatial resolution. We have developed 2 methods for quantitative imaging of membrane potential. One method uses dual wavelength imaging of membrane-staining dyes and the other uses quantitative 3D imaging of a fluorescent lipophilic cation; the dyes used in each case were synthesized for this purpose in this laboratory.


2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.


2003 ◽  
Vol 14 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Walter Sturm

Abstract: Behavioral and PET/fMRI-data are presented to delineate the functional networks subserving alertness, sustained attention, and vigilance as different aspects of attention intensity. The data suggest that a mostly right-hemisphere frontal, parietal, thalamic, and brainstem network plays an important role in the regulation of attention intensity, irrespective of stimulus modality. Under conditions of phasic alertness there is less right frontal activation reflecting a diminished need for top-down regulation with phasic extrinsic stimulation. Furthermore, a high overlap between the functional networks for alerting and spatial orienting of attention is demonstrated. These findings support the hypothesis of a co-activation of the posterior attention system involved in spatial orienting by the anterior alerting network. Possible implications of these findings for the therapy of neglect are proposed.


2001 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Lawrence A. Pervin

David Magnusson has been the most articulate spokesperson for a holistic, systems approach to personality. This paper considers three concepts relevant to a dynamic systems approach to personality: dynamics, systems, and levels. Some of the history of a dynamic view is traced, leading to an emphasis on the need for stressing the interplay among goals. Concepts such as multidetermination, equipotentiality, and equifinality are shown to be important aspects of a systems approach. Finally, attention is drawn to the question of levels of description, analysis, and explanation in a theory of personality. The importance of the issue is emphasized in relation to recent advances in our understanding of biological processes. Integrating such advances into a theory of personality while avoiding the danger of reductionism is a challenge for the future.


1999 ◽  
Vol 82 (08) ◽  
pp. 305-311 ◽  
Author(s):  
Yuri Koshelnick ◽  
Monika Ehart ◽  
Hannes Stockinger ◽  
Bernd Binder

IntroductionThe urokinase-urokinase receptor (u-PA-u-PAR) system seems to play a crucial role in a number of biological processes, including local fibrinolysis, tumor invasion, angiogenesis, neointima and atherosclerotic plaque formation, inflammation, and matrix remodeling during wound healing and development.1-6 Binding of urokinase to its specific receptor provides cells with a localized proteolytic potential. It stimulates conversion of cell surface-bound plasminogen into active plasmin, which, in turn, is required for proteolytic degradation of basement membrane components, including fibronectin, collagen, laminin, and proteoglycan core proteins.7 Moreover, plasmin activates other matrix-degrading enzymes, such as matrix metalloproteinases.8 Overexpression of u-PA/u-PAR correlates with tumor invasion and metastasis formation,9-13 while reduction of cell-surface bound u-PA and inhibition of u-PAR expression leads to a significant decrease of invasive and metastatic activity.14 Specific antagonists that suppress binding of u-PA to u-PAR have been shown to inhibit cell-surface plasminogen activation, tumor growth, and angiogenesis both in vitro and in vivo models.15,16 Independently of its proteolytic activity, u-PA is implicated in many biological processes that seem to require u-PAR-mediated intracellular signal transduction, such as proliferation, chemotactic movement and adhesion, migration, and differentiation.17 Data obtained in the late 1980s indicated that u-PA not only provides cells with local proteolytic activity, but might also be capable of transducing signals to the cell.18-22 At that time, however, the u-PAR has just been isolated, cloned, and identified as a glycosylphosphatidylinositol (GPI)-linked protein and not a transmembrane protein. Signaling via the u-PAR was, therefore, regarded as being unlikely, and the effects of u-PA on cell proliferation18-22 were thought to be mediated by proteolytic activation of latent growth factors. The assumption of direct signaling via u-PAR was, in fact, considered controversial, until about 10 years later when a physical association between u-PAR and signaling proteins was found.23 From this report on, several proteins associated with u-PAR have been identified. Now, u-PAR seems to be part of a large “signalosome” associated and interacting with several proteins on both the outside and inside of the cell.


Author(s):  
Aleksandr E. Hramov ◽  
Nikita S. Frolov ◽  
Vladimir A. Maksimenko ◽  
Semen A. Kurkin ◽  
Viktor B. Kazantsev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document