Innate Immune Responses to LCMV Infections: Natural Killer Cells and Cytokines

Author(s):  
C. A. Biron ◽  
K. B. Nguyen ◽  
G. C. Pien
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
S. Abigail Smith ◽  
Phillip M. Murray ◽  
Praveen Kumar Amancha ◽  
Cassie G. Ackerley ◽  
Yi-Juan Hu ◽  
...  

AbstractOur understanding of innate immune responses in human rectal mucosal tissues (RM) and their contributions to promoting or restricting HIV transmission is limited. We defined the RM composition of innate and innate-like cell subsets, including plasmacytoid dendritic cells; CD1c + myeloid DCs; neutrophils; macrophages; natural killer cells (NK); Marginal Zone-like B cells (MZB); γδ T cells; and mucosal-associated invariant T cells in RM from 69 HIV-negative men by flow cytometry. Associations between these cell subsets and HIV-1 replication in ex vivo RM explant challenge experiments revealed an inverse correlation between RM-NK and p24 production, in contrast to a positive association between RM-MZB and HIV replication. Comparison of RM and blood-derived MZB and NK illustrated qualitative and quantitative differences between tissue compartments. Additionally, 22 soluble molecules were measured in a subset of explant cultures (n = 26). Higher production of IL-17A, IFN-γ, IL-10, IP-10, GM-CSF, sFasL, Granzyme A, Granzyme B, Granulysin, and Perforin following infection positively correlated with HIV replication. These data show novel associations between MZB and NK cells and p24 production in RM and underscore the importance of inflammatory cytokines in mucosal HIV infection, demonstrating the likely critical role these innate immune responses play in early mucosal HIV replication in humans.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 3090-3096 ◽  
Author(s):  
LD Fast ◽  
CR Valeri ◽  
JP Crowley

Graft-versus-host disease (GVHD) is currently encountered after bone marrow transplantation and transfusion. GVHD associated with transfusion (TA-GVHD) in apparently immunocompetent recipients has been recently reported with increasing frequency. A consistent finding in many of these cases is that the recipient received blood from a donor homozygous for one of the recipient's HLA haplotypes. However, the observed frequency of TA-GVHD is much lower than the estimated probability of this donor/recipient combination. The potential role of recipient immune responses in controlling TA-GVHD was investigated using an analogous murine model in which GVHD is induced by the injection of parental lymphoid cells into unirradiated F1 hybrid recipients. The effect of various immune manipulations of the recipient of GVHD induction was assessed by determining the number of donor lymphoid cells required to induce GVHD responses. Whereas depletion of recipient CD4+ cells increased the number of donor cells needed to induce GVHD, depletion of recipient CD8+ and natural killer cells resulted in fewer donor cells being needed to induce a GVHD response. These studies suggest a central role for functioning recipient CD8 and natural killer cells in the down-regulation of TA-GVHD development in recipients.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 3090-3096 ◽  
Author(s):  
LD Fast ◽  
CR Valeri ◽  
JP Crowley

Abstract Graft-versus-host disease (GVHD) is currently encountered after bone marrow transplantation and transfusion. GVHD associated with transfusion (TA-GVHD) in apparently immunocompetent recipients has been recently reported with increasing frequency. A consistent finding in many of these cases is that the recipient received blood from a donor homozygous for one of the recipient's HLA haplotypes. However, the observed frequency of TA-GVHD is much lower than the estimated probability of this donor/recipient combination. The potential role of recipient immune responses in controlling TA-GVHD was investigated using an analogous murine model in which GVHD is induced by the injection of parental lymphoid cells into unirradiated F1 hybrid recipients. The effect of various immune manipulations of the recipient of GVHD induction was assessed by determining the number of donor lymphoid cells required to induce GVHD responses. Whereas depletion of recipient CD4+ cells increased the number of donor cells needed to induce GVHD, depletion of recipient CD8+ and natural killer cells resulted in fewer donor cells being needed to induce a GVHD response. These studies suggest a central role for functioning recipient CD8 and natural killer cells in the down-regulation of TA-GVHD development in recipients.


Author(s):  
Lotte Spel ◽  
Jaap J. Boelens ◽  
Niek van Til ◽  
Dirk M. van der Steen ◽  
Nina J.G. Blokland ◽  
...  

2020 ◽  
Vol 6 (9) ◽  
pp. eaay9269
Author(s):  
Yong Fu ◽  
Yan Ding ◽  
Qinghui Wang ◽  
Feng Zhu ◽  
Yulong Tan ◽  
...  

Malaria parasites suppress host immune responses to facilitate their survival, but the underlying mechanism remains elusive. Here, we found that blood-stage malaria parasites predominantly induced CD4+Foxp3+CD25+ regulatory T cells to release soluble fibrinogen-like protein 2 (sFGL2), which substantially enhanced the infection. This was attributed to the capacity of sFGL2 to inhibit macrophages from releasing monocyte chemoattractant protein-1 (MCP-1) and to sequentially reduce the recruitment of natural killer/natural killer T cells to the spleen and the production of interferon-γ. sFGL2 inhibited c-Jun N-terminal kinase phosphorylation in the Toll-like receptor 2 signaling pathway of macrophages dependent on FcγRIIB receptor to release MCP-1. Notably, sFGL2 were markedly elevated in the sera of patients with malaria, and recombinant FGL2 substantially suppressed Plasmodium falciparum from inducing macrophages to release MCP-1. Therefore, we highlight a previously unrecognized immune suppression strategy of malaria parasites and uncover the fundamental mechanism of sFGL2 to suppress host innate immune responses.


Author(s):  
Nadine Tarantino ◽  
Marion Leboyer ◽  
Arthur Bouleau ◽  
Nora Hamdani ◽  
Jean Romain Richard ◽  
...  

2019 ◽  
Vol 17 (6) ◽  
pp. 97-104 ◽  
Author(s):  
E. A. Borobova ◽  
A. A. Zheravin

Cancer is the second leading cause of death worldwide behind cardiovascular diseases. Late stage of cancer at diagnosis and low efficacy of traditional cancer treatments result in low survival rate in cancer patients. Modern techniques to kill tumor cells are therefore needed. Over the last decade novel anticancer treatments have emerged from advances in our understanding of tumor cell biology, and a number of molecular and biologic targets have been identified. Chimeric antigen receptor T cell (CAR-T cell) therapy is a novel adoptive immunotherapy, which is used predominantly in the treatment of hematological malignancies. Moreover, it has been evidenced that cells of the innate immune system are key players at initiating and regulating adaptive immune responses. Studies focusing on innate immune cells for cancer immunotherapy show promising results. In this review, we describe functions of natural killer cells and analyze the rationale for using natural killer cells in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document