Larval Mortality and Subsequent Year-Class Strength in the Plaice (Pleuronectes platessa L.)

1974 ◽  
pp. 21-37 ◽  
Author(s):  
R. C. A. Bannister ◽  
D. Harding ◽  
S. J. Lockwood
Author(s):  
J. H. S. Blaxter

The importance of egg and larval mortality in the determination of year-class strength was discussed at a colloquium at La Jolla, California in 1975 (see Hunter, 1976). In addition to the obvious effects of starvation, predation and disease, pollution by such substances as copper is an important factor affecting viability. The copper concentration in sea water is generally about 1–2,µ/l. Chester & Stoner (1974), in a comprehensive survey, found an average copper concentration of 0.8µ/l in the open ocean and 0.9 µg/l nearer the shore. In British waters Preston et al. (1974) reported a range of 1.1–1.6 µg/l and Portmann (1972a) found a range of 1–20 µg/l with the possibility of 1000 µg/l near sea-bed copper deposits.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 533e-533
Author(s):  
Krista C. Shellie

The objective of this research was to investigate whether the medium used to transfer heat to a commodity influenced the mortality of Mexican fruit fly larvae. A similar 2-h heat dose was delivered to grapefruit via immersion in a variable temperature water bath or via exposure to a rapidly circulating gas. The concentration of oxygen and carbon dioxide inside the grapefruit was analyzed at 30-min intervals and grapefruit center temperatures recorded every 60 s during heating. The mortality of larvae located inside grapefruit during heating in a controlled atmosphere or in hot water was significantly higher than that of larvae located inside grapefruit heated in air. The internal atmosphere of grapefruit heated in a controlled atmosphere or in hot water contained significantly higher levels of carbon dioxide and lower levels of oxygen than grapefruit heated in air. Larval mortality was compared after larvae were heated in media by rapidly circulating air or by an atmosphere containing 4 kPa of oxygen and 18 kPa of carbon dioxide to evaluate whether the altered atmosphere or a heat-induced fruit metabolite was responsible for enhanced mortality. The significantly higher mortality of larvae heated in media in the presence of an altered atmosphere suggested that the altered atmosphere enhanced larval mortality. Results from this research suggest that reducing oxygen and or increasing the level of carbon dioxide during heating can enhance mortality of the Mexican fruit fly and potentially reduce the heat dose required for quarantine security.


2020 ◽  
Vol 26 (33) ◽  
pp. 4092-4111
Author(s):  
Mikael A. de Souza ◽  
Larissa da Silva ◽  
Maria A. C. dos Santos ◽  
Márcia J. F. Macêdo ◽  
Luiz J. Lacerda-Neto ◽  
...  

The Aedes aegypti is responsible for the transmission of arboviruses, which compromise public health. In the search for synthetic product alternatives, essential oils (OEs) have been highlighted by many researchers as natural insecticides. This systematic review (SR) was performed according to PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and its objective was to evaluate studies addressing OEs with larvicidal properties against Ae. aegypti, through electronic database searches (Pubmed, Science Direct and Scielo), covering an overview of the plant sources OEs, which plant parts were used, the extraction methods, analytical techniques, major and/or secondary constituents with greater percentages, as well as the LC50s responsible for larval mortality. Following study analysis, plants distributed across 32 families, 90 genera and 175 species were identified. The Lamiaceae, Myrtaceae, Piperaceae, Asteraceae, Rutaceae, Euphorbiaceae and Lauraceae families obtained the highest number of species with toxic properties against larvae from this vector. Practically all plant parts were found to be used for OE extraction. Hydrodistillation and steam distillation were the main extraction methods identified, with GC-MS/GC-FID representing the main analytical techniques used to reveal their chemical composition, especially of terpene compounds. In this context, OEs are promising alternatives for the investigation of natural, ecologically correct and biodegradable insecticides with the potential to be used in Ae. aegypti control programs.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Ghulam Sarwar ◽  
Naeem Arshad Maan ◽  
Muhammad Ahsin Ayub ◽  
Muhammad Rafiq Shahid ◽  
Mubasher Ahmad Malik ◽  
...  

Abstract Background The armyworms, Spodoptera exigua (Hübner), and S. litura (Fabricius) (Lepidoptera: Noctuidae) are polyphagous pests of many cash crops. Heavy crop losses have been reported for the fruit and vegetable crops each year owing to the diverse impact on global economies. The present study was aimed to sort out a novel method of pest control using the insect’s own nucleopolyhedrosis virus (NPV) alone and in combination with a new chemistry insecticide chlorantraniliprole. Results In the study, the effect of indigenous isolated nucleopolyhedrovirus (NPV) and the chemical insecticide (chlorantraniliprole) formulations against the 2nd and 4th larval instars of S. litura and S. exigua, collected from the different geographical region of Punjab (Pakistan) province, was evaluated. Three concentrations of the NPV isolate, sub-lethal (1 × 104, 6 × 104 POB ml−1), lethal (3 × 105 POB ml−1), and chlorantraniliprole 0.01 μl l−1, were applied alone and in combination against the 2nd and 4th larval instars of both pest species. The lethal concentration of NPV + chlorantraniliprole exhibited synergistic interaction and caused high larval mortality against both instars, while in all other combinations, additive effect was observed. Moreover, NPV + chlorantraniliprole at lethal concentration exhibited decreased pupation, adult emergence, and egg eclosion. Conclusion The implications of using NPV alone and in combination with an insecticide are discussed briefly in this study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abhay Punia ◽  
Nalini Singh Chauhan ◽  
Drishtant Singh ◽  
Anup Kumar Kesavan ◽  
Sanehdeep Kaur ◽  
...  

AbstractThe antibiosis effect of gallic acid on Spodoptera litura F. (Lepidoptera: Noctuidae) and its parasitoid evaluated by feeding six days old larvae on artificial diet incorporated with different concentrations (5 ppm, 25 ppm, 125 ppm, 625 ppm, 3125 ppm) of the phenolic compound revealed higher concentration (LC50) of gallic acid had a negative impact on the survival and physiology of S. litura and its parasitoid Bracon hebetor (Say) (Hymenoptera:Braconidae). The mortality of S. litura larvae was increased whereas adult emergence declined with increasing concentration of gallic acid. The developmental period was delayed significantly and all the nutritional indices were reduced significantly with increase in concentration. Higher concentration (LC50) of gallic acid adversely affected egg hatching, larval mortality, adult emergence and total development period of B. hebetor. At lower concentration (LC30) the effect on B. hebetor adults and larvae was non-significant with respect to control. Gene expression for the enzymes viz., Superoxide dismutase, Glutathione peroxidase, Peroxidase, Esterases and Glutathione S transferases increased while the total hemocyte count of S. litura larvae decreased with treatment. Our findings suggest that gallic acid even at lower concentration (LC30) can impair the growth of S. litura larvae without causing any significant harm to its parasitoid B. hebetor and has immense potential to be used as biopesticides.


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Ahlam Ahmed Alfazairy ◽  
Yasien Mohamed Gamal Zedan El-Abed ◽  
Hanan Mohamed Ramadan ◽  
Hedaya Hamza Karam

AbstractAverage yields of Mattesia spores (spore productivity) had varied from a minimum yield (0.17 × 107 spores) for Laemophloeus turcicus adult to a maximum yield (7.46 × 107 spores) for Plodia interpunctella larva. Comparatively, the highest increase in Mattesia spore yield, recorded from P. interpunctella larva (7.46 × 107 spores) over the lowest one, estimated for L. turcicus adult (0.17 × 107 spores), was nearly 44-fold. The increase in Mattesia spore yields that calculated from the other hosts (P. interpunctella pupa or moth; Galleria mellonella larva; Rhyzopertha dominica adult; Sitophilus zeamais), over that estimated for L. turcicus adult, was less than 10-fold (6–9-fold). Based on the weight of 1 g of the insect host infected with Mattesia sp., small stored grain insect hosts (e.g. L. turcicus, S. zeamais, and R. dominica) seemed to achieve Mattesia spore yields more than the larger ones (e.g. P. interpunctella). The increase in spore yields over that used for the inoculum, based on an average of 25 P. interpunctella larvae per bioassay container, was ca. 2 to 31-fold. These results revealed that the Indianmeal moth, P. interpunctella, could serve as a potential host for mass propagating the isolated entomopathogenic protozoan, Mattesia sp. Besides Mattesia larval mortality, survivors of Mattesia infection suffered deformities and noticeable undersized pupae or adults than the control ones. Also, many copulated moths (ca.46%) were unable to become separated after copulation until they had died. Bioassay of siftings, obtained from L. turcicus-protozoan-infected stock cultures, was carried out in order to emphasize the suppressive potent role of such protozoan entomopathogens in long-term storage. With the highest tested concentration of the studied siftings (10%), mortality responses due to Mattesia infection ranged from 13 to 68% at 14–169 days post-treatment. The corresponding figures for Adelina infection were 7–42%.


Sign in / Sign up

Export Citation Format

Share Document