Larvicidal Activity of Essential Oils Against Aedes aegypti (Diptera: Culicidae)

2020 ◽  
Vol 26 (33) ◽  
pp. 4092-4111
Author(s):  
Mikael A. de Souza ◽  
Larissa da Silva ◽  
Maria A. C. dos Santos ◽  
Márcia J. F. Macêdo ◽  
Luiz J. Lacerda-Neto ◽  
...  

The Aedes aegypti is responsible for the transmission of arboviruses, which compromise public health. In the search for synthetic product alternatives, essential oils (OEs) have been highlighted by many researchers as natural insecticides. This systematic review (SR) was performed according to PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and its objective was to evaluate studies addressing OEs with larvicidal properties against Ae. aegypti, through electronic database searches (Pubmed, Science Direct and Scielo), covering an overview of the plant sources OEs, which plant parts were used, the extraction methods, analytical techniques, major and/or secondary constituents with greater percentages, as well as the LC50s responsible for larval mortality. Following study analysis, plants distributed across 32 families, 90 genera and 175 species were identified. The Lamiaceae, Myrtaceae, Piperaceae, Asteraceae, Rutaceae, Euphorbiaceae and Lauraceae families obtained the highest number of species with toxic properties against larvae from this vector. Practically all plant parts were found to be used for OE extraction. Hydrodistillation and steam distillation were the main extraction methods identified, with GC-MS/GC-FID representing the main analytical techniques used to reveal their chemical composition, especially of terpene compounds. In this context, OEs are promising alternatives for the investigation of natural, ecologically correct and biodegradable insecticides with the potential to be used in Ae. aegypti control programs.

2007 ◽  
Vol 2 (12) ◽  
pp. 1934578X0700201 ◽  
Author(s):  
Hélcio S. Santos ◽  
Gilvandete M. P. Santiago ◽  
João P. P. de Oliveira ◽  
Angela M. C. Arriaga ◽  
Délcio D. Marques ◽  
...  

The chemical composition of the essential oils from leaves, stalks and inflorescences of Croton zehntneri obtained by hydrodistillation were analyzed by GC-MS and CG-FID. E-Anethole was the main component of the essential oils of all plant parts. Essential oils of leaves, stalks, inflorescences and E-anethole were tested at different concentrations against instar III larvae of Aedes aegypti and showed LC50 values of 56.2 ± 0.3, 51.3 ± 0.3, 57.5 ± 0.1 and 69.2 ± 0.5 μg/mL, respectively.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1359
Author(s):  
Abbas Ali ◽  
Nurhayat Tabanca ◽  
Betul Demirci ◽  
Vijayasankar Raman ◽  
Jane M. Budel ◽  
...  

In our natural products screening program for mosquitoes, we tested essential oils extracted from different plant parts of Magnolia grandiflora L. for their insecticidal and biting deterrent activities against Aedes aegypti. Biting deterrence of seeds essential oil with biting deterrence index value of 0.89 was similar to N,N-diethyl-3-methylbenzamide (DEET). All the other oils were active above the solvent control but the activity was significantly lower than DEET. Based on GC-MS analysis, three pure compounds that were only present in the essential oil of seed were further investigated to identify the compounds responsible for biting deterrent activity. 1-Decanol with PNB value of 0.8 was similar to DEET (PNB = 0.8), whereas 1-octanol with PNB value of 0.64 showed biting deterrence lower than 1-decanol and DEET. The activity of 1-heptanol with PNB value of 0.36 was similar to the negative control. Since 1-decanol, which was 3.3% of the seed essential oil, showed biting deterrence similar to DEET as a pure compound, this compound might be responsible for the activity of this oil. In in vitro A & K bioassay, 1-decanol with MED value of 6.25 showed higher repellency than DEET (MED = 12.5). Essential oils of immature and mature fruit showed high toxicity whereas leaf, flower, and seeds essential oils gave only 20%, 0%, and 50% mortality, respectively, at the highest dose of 125 ppm. 1-Decanol with LC50 of 4.8 ppm was the most toxic compound.


2020 ◽  
Author(s):  
Romesh Kumar Salgotra ◽  
Bhagirath Singh Chauhan

Abstract Background: The study of weed genomics is important for the effective management of weeds to enhance crop yield. A rapid, inexpensive and high quality DNA extraction is needed for genomic and other molecular studies. Here, we describe the protocols for DNA extraction from two different parts of the Echinochloa colona plant using modified cetyltrimethylammonium bromide (CTAB) and a commercial kit.Results: In the study, it was observed that the DNA extracted from plant leaf tissues and dry seeds with a modified CTAB protocol was of good quality, with no contaminations of polysaccharides and essential oils. Quality of DNA extracted from dry seeds was comparable with that of plant leaves under both protocols. The extracted DNA from both plant parts was successfully amplified by PCR using the EPSPS microsatellite marker. Compared to the protocol of DNA extracted from leaf tissue, dry seeds will save time and other valuable resources. Moreover, the same protocols can be implemented for the extraction of high-quality DNA for molecular studies in other plant species where a large amount of polysaccharides, secondary metabolites and essential oils are present.Conclusions: Modified methods of DNA extraction from dry seeds are efficient and time-saving which can be used in genotypic and other molecular approaches. High-quality DNA can be isolated from plant leaf tissues using modified CTAB and commercial kits, however, DNA extracted from dry seeds will save time and other valuable resources.


2018 ◽  
Vol 15 (30) ◽  
pp. 364-379
Author(s):  
Q. Q. A. ANJOS ◽  
S. L. C. SILVA ◽  
D. C. SILVA ◽  
S. A. GUALBERTO ◽  
F. R. SANTOS ◽  
...  

Research has demonstrated the presence of a variety of chemical substances in the essential oils of species belonging to the Croton genus and its potential insecticide. The objective of this research was to evaluate the larvicidal activity of the essential oil obtained from the aerial part of Croton tetradenius on Aedes aegypti, as well as its yield and chemical composition, in relation to different periods of collection of the botanical material. Eight essential oil concentrations were evaluated, using 4 replicates per treatment, using 30 larvae per replicate, totaling 120 larvae per treatment. The chemical composition analysis was carried out using Gas Chromatography coupled to Mass Spectrometry. The yield of the essential oil in the extraction carried out in February was lower. The most toxic essential oil for A. aegypti larvae was extracted in August. The analysis of the chemical composition revealed the presence of 60, 48 and 62 compounds in the essential oils for the months of February, May and August, respectively. The essential oil obtained from the aerial part of C. tetradenius has shown to be promising for use in A. aegypti integrated control programs, however, in order to maximize this toxic effect, the collection period should be taken into account.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
F Ghavidel ◽  
MM Zarshenas ◽  
A Sakhteman ◽  
A Gholami ◽  
Y Ghasemi ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Rafiq Shahid ◽  
Muhammad Farooq ◽  
Muhammad Shakeel ◽  
Misbah Ashraf ◽  
Zia Ullah Zia ◽  
...  

Abstract Background The effectiveness of Bacillus thuringiensis (Bt) cotton against target arthropod larvae is decreasing day by day. The comparative effect of Bt expression among Bt cotton varieties and different plant parts was observed against the cotton bollworms: Helicoverpa armigera and Pectinophora gossypiella larvae. Results In the present study, larval mortality of H. armigera was higher than P. gossypiella among selected Bt cultivars. Median lethal concentration (LC50) values were 8.91, 13.4, 14.0, and 36.4 for P. gossypiella, while 5.91, 4.04, 2.37, and 8.26 for H. armigera of FH-142, MNH-886, IR-3701, and FH-Lalazar, respectively. These values depicted that P. gossypiella had more Bt resistance problem than H. armigera larvae. The host range of both targeted insect larvae was different from each other due to the polyphagous feeding nature of the larvae of H. armigera that feed on different host plants, but P. gossypiella attacked only cotton with monophagous feeding habit. It was also notable from results that Bt expression in reproductive parts where the attacked pink bollworm was lower than the American bollworm, so the former had the maximum chance of resistance due to repeated exposure to Bt. Conclusions It was concluded that farmers be advised to follow the practice of growing non-Bt as a refuge crop to reduce the problem of Bt resistance in the target arthropod species.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Tse-Yu Chen ◽  
Chelsea T. Smartt ◽  
Dongyoung Shin

Aedes aegypti, as one of the vectors transmitting several arboviruses, is the main target in mosquito control programs. Permethrin is used to control mosquitoes and Aedes aegypti get exposed due to its overuse and are now resistant. The increasing percentage of permethrin resistant Aedes aegypti has become an important issue around the world and the potential influence on vectorial capacity needs to be studied. Here we selected a permethrin resistant (p-s) Aedes aegypti population from a wild Florida population and confirmed the resistance ratio to its parental population. We used allele-specific PCR genotyping of the V1016I and F1534C sites in the sodium channel gene to map mutations responsible for the resistance. Two important factors, survival rate and vector competence, that impact vectorial capacity were checked. Results indicated the p-s population had 20 times more resistance to permethrin based on LD50 compared to the parental population. In the genotyping study, the p-s population had more homozygous mutations in both mutant sites of the sodium channel gene. The p-s adults survived longer and had a higher dissemination rate for dengue virus than the parental population. These results suggest that highly permethrin resistant Aedes aegypti populations might affect the vectorial capacity, moreover, resistance increased the survival time and vector competence, which should be of concern in areas where permethrin is applied.


2019 ◽  
Vol 57 (3) ◽  
pp. 957-961
Author(s):  
Kyran M Staunton ◽  
Barukh B Rohde ◽  
Michael Townsend ◽  
Jianyi Liu ◽  
Mark Desnoyer ◽  
...  

Abstract Aedes aegypti (Linnaeus), the primary vectors of the arboviruses dengue virus and Zika virus, continue to expand their global distributions. In efforts to better control such species, several mosquito control programs are investigating the efficacy of rearing and releasing millions of altered male Aedes throughout landscapes to reduce populations and disease transmission risk. Unfortunately, little is known about Ae. aegypti, especially male, dispersal behaviors within urban habitats. We deployed Sound-producing Gravid Aedes Traps (SGATs) in Cairns, northern Australia, to investigate male Ae. aegypti attraction to various oviposition container configurations. The traps were arranged to include: 1) water only, 2) organically infused water, 3) infused water and L3 larvae, 4) infused water and a human-scented lure, and lastly 5) no water or olfactory attractant (dry). Our data suggest that males were more attracted to SGATs representing active larval sites than potential larval sites, but were equally attracted to dry SGATs relative to those containing water and/or infusion. Additionally, we found that female Ae. aegypti were equally attracted to wet SGATs, with or without infusion, but not dry ones. These results suggest that male Ae. aegypti within northern Australia are more attracted to active larval sites and equally attracted to dry containers as wet or infused ones. Additionally, female Ae. aegypti are unlikely to enter dry containers. Such findings contribute to our understanding of potentially attractive features for local and released Ae. aegypti throughout the northern Australian urban landscape.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2053 ◽  
Author(s):  
Yaoyao Peng ◽  
Karen Suzanne Bishop ◽  
Siew Young Quek

Feijoa is an aromatic fruit and the essential oil from feijoa peel could be a valuable by-product in the juicing industry. An initial comparison of the essential oil extraction methods, steam-distillation and hydro-distillation, was conducted. The volatile compounds in the essential oils from four feijoa cultivars were identified and semi-quantified by GC-MS and the aroma active compounds in each essential oil were characterized using SPME-GC-O-MS. Hydro-distillation, with a material to water ratio of 1:4 and an extraction time of 90 min, was the optimized extraction method for feijoa essential oil. The Wiki Tu cultivar produced the highest essential oil yield among the four selected cultivars. A total of 160 compounds were detected, among which 90 compounds were reported for the first time in feijoa essential oils. Terpenes and esters were dominant compounds in feijoa essential oil composition and were also major contributors to feijoa essential oil aroma. Key aroma active compounds in feijoa essential oils were α-terpineol, ethyl benzoate, (Z)-3-hexenyl hexanoate, linalool, (E)-geraniol, 2-undecanone, 3-octanone, α-cubebene, and germacrene D. This is the first report on the optimization of the extraction method and the establishment of the aroma profile of feijoa essential oils, with a comparison of four New Zealand grown cultivars.


Sign in / Sign up

Export Citation Format

Share Document