A Decision Tree Approach for the Application of Drug Metabolism and Kinetic Studies to in Vivo and in Vitro Toxicological and Pharmacological Testing

Author(s):  
P. H. Bach ◽  
J. W. Bridges
Diabetes ◽  
1975 ◽  
Vol 24 (12) ◽  
pp. 1094-1100 ◽  
Author(s):  
A. Rabinovitch ◽  
A. Gutzeit ◽  
A. E. Renold ◽  
E. Cerasi

2012 ◽  
Vol 65 (1-2) ◽  
pp. 45-49
Author(s):  
Bozana Nikolic ◽  
Miroslav Savic

Introduction. Since drug interactions may result in serious adverse effects or failure of therapy, it is of huge importance that health professionals base their decisions about drug prescription, dispensing and administration on reliable research evidence, taking into account the hierarchy of data sources for evaluation. Clinical Significance of Potential Interactions - Information Sources. The sources of data regarding drug interactions are numerous, beginning with various drug reference books. However, they are far from uniformity in the way of choosing and presenting putative clinically relevant interactions. Clinical Significance of Potential Interactions - Interpretation of Information. The difficulties in interpretation of drug interactions are illustrated through the analysis of a published example involving assessment made by two different groups of health professionals. Systematic Evaluation of Drug-Drug Interaction. The potential for interactions is mainly investigated before marketing a drug. Generally, the in vitro, followed by in vivo studies are to be performed. The major metabolic pathways involved in the metabolism of a new molecular entity, as well as the potential of induction of human enzymes involved in drug metabolism are to be examined. In the field of interaction research it is possible to make use of the population pharmacokinetic studies as well as of the pharmacodynamic assessment, and also the postregistration monitoring of the reported adverse reactions and other literature data. Conclusion. In vitro and in vivo drug metabolism and transport studies should be conducted to elucidate the mechanisms and potential for drug-drug interactions. The assessment of their clinical significance should be based on well-defined and validated exposure-response data.


2017 ◽  
Vol 114 (38) ◽  
pp. 10101-10106 ◽  
Author(s):  
Kanishk Jain ◽  
Cyrus Y. Jin ◽  
Steven G. Clarke

Arginine methylation on histones is a central player in epigenetics and in gene activation and repression. Protein arginine methyltransferase (PRMT) activity has been implicated in stem cell pluripotency, cancer metastasis, and tumorigenesis. The expression of one of the nine mammalian PRMTs, PRMT5, affects the levels of symmetric dimethylarginine (SDMA) at Arg-3 on histone H4, leading to the repression of genes which are related to disease progression in lymphoma and leukemia. Another PRMT, PRMT7, also affects SDMA levels at the same site despite its unique monomethylating activity and the lack of any evidence for PRMT7-catalyzed histone H4 Arg-3 methylation. We present evidence that PRMT7-mediated monomethylation of histone H4 Arg-17 regulates PRMT5 activity at Arg-3 in the same protein. We analyzed the kinetics of PRMT5 over a wide range of substrate concentrations. Significantly, we discovered that PRMT5 displays positive cooperativity in vitro, suggesting that this enzyme may be allosterically regulated in vivo as well. Most interestingly, monomethylation at Arg-17 in histone H4 not only raised the general activity of PRMT5 with this substrate, but also ameliorated the low activity of PRMT5 at low substrate concentrations. These kinetic studies suggest a biochemical explanation for the interplay between PRMT5- and PRMT7-mediated methylation of the same substrate at different residues and also suggest a general model for regulation of PRMTs. Elucidating the exact relationship between these two enzymes when they methylate two distinct sites of the same substrate may aid in developing therapeutics aimed at reducing PRMT5/7 activity in cancer and other diseases.


2010 ◽  
Vol 76 (21) ◽  
pp. 7217-7225 ◽  
Author(s):  
Daniel P. MacEachran ◽  
M. E. Prophete ◽  
A. J. Sinskey

ABSTRACT Generally, prokaryotes store carbon as polyhydroxyalkanoate, starch, or glycogen. The Gram-positive actinomycete Rhodococcus opacus strain PD630 is noteworthy in that it stores carbon in the form of triacylglycerol (TAG). Several studies have demonstrated that R. opacus PD630 can accumulate up to 76% of its cell dry weight as TAG when grown under nitrogen-limiting conditions. While this process is well studied, the underlying molecular and biochemical mechanisms leading to TAG biosynthesis and subsequent storage are poorly understood. We designed a high-throughput genetic screening to identify genes and their products required for TAG biosynthesis and storage in R. opacus PD630. We identified a gene predicted to encode a putative heparin-binding hemagglutinin homolog, which we have termed tadA (triacylglycerol accumulation deficient), as being important for TAG accumulation. Kinetic studies of TAG accumulation in both the wild-type (WT) and mutant strains demonstrated that the tadA mutant accumulates 30 to 40% less TAG than the parental strain (WT). We observed that lipid bodies formed by the mutant strain were of a different size and shape than those of the WT. Characterization of TadA demonstrated that the protein is capable of binding heparin and of agglutinating purified lipid bodies. Finally, we observed that the TadA protein localizes to lipid bodies in R. opacus PD630 both in vivo and in vitro. Based on these data, we hypothesize that the TadA protein acts to aggregate small lipid bodies, found in cells during early stages of lipid storage, into larger lipid bodies and thus plays a key role in lipid body maturation in R. opacus PD630.


1996 ◽  
Vol 84 (6) ◽  
pp. 1435-1442 ◽  
Author(s):  
Claudia M. Muller ◽  
Annette Scierka ◽  
Richard L. Stiller ◽  
Yong-Myeong Kim ◽  
Ryan D. Cook ◽  
...  

Background Animals subjected to immunostimulatory conditions (sepsis) exhibit decreased total cytochrome P450 content and decreased P450-dependent drug metabolism. Cytochrome P450 function is of clinical significance because it mediates the metabolism of some opioid and hypnotic drugs. The authors tested the hypothesis that reduced P450 function and decreased drug metabolism in sepsis are mediated by endotoxin-enhanced synthesis of nitric oxide. Methods Hepatic microsomes were prepared from male Sprague-Dawley rats in nontreated rats, rats pretreated with phenobarbital and rats receiving aminoguanidine or NG-L-monomethyl-arginine alone. Nitric oxide synthesis was augmented for 12 h with a single injection of bacterial lipopolysaccharides. Nitric oxide synthase was inhibited with aminoguanidine or N(G)-L-monomethyl-arginine during the 12 h of endotoxemia in some animals. Plasma nitrite and nitrate concentrations were measured in vivo, and total microsomal P450 content, and metabolism of ethylmorphine and midazolam in vitro. Results Administration of endotoxin increased plasma nitrite and nitrate concentrations, decreased total cytochrome P450 content, and decreased metabolism of ethylmorphine and midazolam. Inhibition of nitric oxide formation by aminoguanidine or N(G)-L-monomethyl-arginine partially prevented the endotoxin-induced effects in the nontreated and phenobarbital-treated groups. Aminoguanidine or N(G)-L-monomethyl-arginine alone did not have an effect on either total cytochrome P450 content or P450-dependent drug metabolism. Plasma nitrite and nitrate concentrations correlated significantly negatively with P450 content (nontreated r = -0.88, phenobarbital r = -0.91), concentrations of formed formaldehyde (nontreated r = -0.87, phenobarbital r = -0.95), and concentrations of midazolam metabolites (4-OH midazolam nontreated r = -0.88, phenobarbital r = -0.93, and 1'-OH midazolam nontreated r = -0.88, phenobarbital r = -0.97). Conclusions Altered hepatic microsomal ethylmorphine and midazolam metabolism during sepsis is mediated in large part by nitric oxide.


2006 ◽  
Vol 75 (4) ◽  
pp. 1619-1625 ◽  
Author(s):  
Jeffrey Fischer ◽  
Jeffrey West ◽  
Nnenaya Agochukwu ◽  
Colby Suire ◽  
Hollie Hale-Donze

ABSTRACT Microsporidians are a group of emerging pathogens typically associated with chronic diarrhea in immunocompromised individuals. The number of reports of infections with these organisms and the disseminated pathology is growing as diagnostic tools become more readily available. However, little is known about the innate immune response induced by and generated against these parasites. Using a coculture chemotaxis system, primary human macrophages were infected with Encephalitozoon cuniculi or Encephalitozoon intestinalis, and the recruitment of naïve monocytes was monitored. Encephalitozoon spp. induced an average threefold increase in migration of naïve cells 48 h postinfection, which corresponded to optimal infection of monocyte-derived-macrophages. A limited microarray analysis of infected macrophages revealed several chemokines involved in the inflammatory responses whose expression was upregulated, including CCL1, CCL2, CCL3, CCL4, CCL7, CCL15, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, and CXCL8. The levels of 6 of 11 chemokines also present in the microarray were confirmed to be elevated by protein profiling. Kinetic studies confirmed that secreted CCL2, CCL3, and CCL4 were expressed as early as 6 h postinfection, with peak expression at 12 to 24 h and expression remaining until 48 h postinfection. Neutralization of these chemokines, specifically CCL4, significantly reduced the number of migrating cells in vitro, indicating their role in the induction of monocyte migration. This mechanism of recruitment not only supports the evidence that in vivo cellular infiltration occurs but also provides new hosts for the parasites, which escape macrophages by rupturing the host cell. To our knowledge, this is the first documentation that chemokine production is induced by microsporidian infections in human macrophages.


Blood ◽  
1972 ◽  
Vol 39 (3) ◽  
pp. 415-425 ◽  
Author(s):  
Larry Waterbury ◽  
Eugene P. Frenkel

Abstract Hereditary nonspherocytic hemolysis associated with abnormal erythrocyte phosphofructokinase activity was demonstrated in a young man. Enzyme activity in the propositus, his mother, and maternal grandmother was approximately 60% of normal controls. There was markedly increased lability of enzyme activity on in vitro storage. Kinetic studies revealed increased sensitivity to adenosine triphosphate inhibition. Erythrocyte adenosine triphosphate levels were depressed. The absence of muscle disease and the presence of normal in vivo lactate production following ischemic exercise differentiated this kindred from those with Type VII glycogen storage disease.


Sign in / Sign up

Export Citation Format

Share Document