Structural Correlates of Aging in Drosophila: Relevance to the Cell Differentiation, Rate-of-Living and Free Radical Theories of Aging

Insect Aging ◽  
1986 ◽  
pp. 117-129 ◽  
Author(s):  
J. Miquel ◽  
D. E. Philpott
2018 ◽  
Vol 29 (10) ◽  
pp. 1003-1017 ◽  
Author(s):  
Alexey Golubev ◽  
Andrew D. Hanson ◽  
Vadim N. Gladyshev

Gerontology ◽  
2017 ◽  
Vol 64 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Naftali Raz ◽  
Ana M. Daugherty

In this mini-review, we survey the extant literature on brain aging, with the emphasis on longitudinal studies of neuroanatomy, including regional brain volumes and white matter microstructure. We assess the impact of vascular, metabolic, and inflammatory risk factors on the trajectories of change in regional brain volumes and white matter properties, as well as the relationships between neuroanatomical and physiological changes and their influence on cognitive performance. We examine these findings in the context of current biological theories of aging and propose the means of integrating noninvasive measures - spectroscopic indices of brain energy metabolism and regional iron deposits - as valuable proxies for elucidating the basic neurobiology of human brain aging. In a brief summary of the recent findings pertaining to age-related changes in the brain structure and their impact on cognition, we discuss the role of vascular, metabolic, and inflammatory risk factors in shaping the trajectories of change. Drawing on the extant biological theories of aging and mindful of the brain's role as a disproportionately voracious energy consumer in mammals, we emphasize the importance of the fundamental bioenergetic mechanisms as drivers of age-related changes in brain structure and function. We sketch out a model that builds on the conceptualization of aging as an expression of cumulative cellular damage inflicted by reactive oxygen species and ensuing declines in energy metabolism. We outline the ways and means of adapting this model, Free-Radical-Induced Energetic and Neural Decline in Senescence (FRIENDS), to human aging and testing it within the constraints of noninvasive neuroimaging.


Author(s):  
H. Alasam

The possibility that intrathymic T-cell differentiation involves stem cell-lymphoid interactions in embryos led us to study the ultrastructure of epithelial cell in normal embryonic thymus. Studies in adult thymus showed that it produces several peptides that induce T-cell differentiation. Several of them have been chemically characterized, such as thymosin α 1, thymopoietin, thymic humoral factor or the serum thymic factor. It was suggested that most of these factors are secreted by populations of A and B-epithelial cells.Embryonic materials were obtained from inbred matings of Swiss Albino mice. Thymuses were disected from embryos 17 days old and prepared for transmission electron microscopy. Our studies showed that embryonic thymus at this stage contains undifferentiated and differentiated epithelial cells, large lymphoblasts, medium and few small lymphocytes (Fig. 5). No differences were found between cortical and medullary epithelial cells, in contrast to the findings of Van Vliet et al,. Epithelial cells were mostly of the A-type with low electron density in both cytoplasm and nucleus. However few B-type with high electron density were also found (Fig. 7).


Author(s):  
O. M. Faroon ◽  
R. W. Henry ◽  
M. G. Soni ◽  
H. M. Mehendale

Previous work has shown that mirex undergoes photolytic dechlorination to chlordecone (CD) (KeponeR) in the environment. Much work has shown that prior exposure to nontoxic levels of CD causes potentiation of hepatotoxicity and lethality of CCl4, BrCCl3 and other halomethane compounds. Potentiation of bromotrichloromethane hepatotoxicity has been associated with compounds that stimulate the activity of hepatic mixed-function oxidase (MFO). An increase in the metabolism of halomethane by the MFO to a free radical initiates peroxidative decomposition of membranal lipids ending in massive cellular injury. However, not all MFO inducers potentiate BrCCl3 hepatotoxicity. Potentiation by much larger doses of phenobarbital is minimal and th at by a more potent inducer of MFO, mirex, is negligible at low doses. We suggest that the CD and bromotrichloromethane interaction results in a depletion of cellular energy and thereby reducing the cellular ability to undergo mitosis.


Author(s):  
Fengqian Zhao ◽  
Xiao-Feng Wu

A transition-metal-free radical carbonylation of activated alkylamines with thiophenols has been successfully developed. Various thioesters were selectively produced with moderate to good yields.


2001 ◽  
Vol 120 (5) ◽  
pp. A517-A517
Author(s):  
A MIZOGUCHI ◽  
E MIZOGUCHI ◽  
Y DEJONG ◽  
H TAKEDATSU ◽  
F PREFFER ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 295-295
Author(s):  
Fernando C. Delvecchio ◽  
Ricardo M. Brizuela ◽  
Karen J. Byer ◽  
W. Patrick Springhart ◽  
Saeed R. Khan ◽  
...  

2005 ◽  
Vol 2 (2) ◽  
pp. 107-109
Author(s):  
A. Mishra ◽  
M.F. Huda ◽  
V.P. Singh ◽  
S. Mohanty ◽  
A. Sodhi

Sign in / Sign up

Export Citation Format

Share Document