Experiments on Low Energy Bhabha Scattering Search for Neutral Resonances in the MeV/c2 Mass Region

Author(s):  
C. Kozhuharov
2015 ◽  
Vol 91 (2) ◽  
Author(s):  
Saumi Dutta ◽  
Dipti Chakraborty ◽  
G. Gangopadhyay ◽  
Abhijit Bhattacharyya

1993 ◽  
Vol 62 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
H. Naik ◽  
S. P. Dange ◽  
T. Datta

2016 ◽  
Vol 25 (02) ◽  
pp. 1650015 ◽  
Author(s):  
C. Lahiri ◽  
S. K. Biswal ◽  
S. K. Patra

Microscopic optical potentials for low-energy proton reactions have been obtained by folding density dependent M3Y (DDM3Y) interaction derived from nuclear matter calculation with densities from mean field approach to study astrophysically important proton rich nuclei in mass 100–120 region. We compare [Formula: see text] factors for low-energy [Formula: see text] reactions with available experimental data and further calculate astrophysical reaction rates for [Formula: see text] and [Formula: see text] reactions. Again, we choose some nonlinear R3Y (NR3Y) interactions from relativistic mean field (RMF) calculation and folded them with corresponding RMF densities to reproduce experimental [Formula: see text]-factor values in this mass region. Finally, the effect of nonlinearity on our result is discussed.


1990 ◽  
Vol 509 (3) ◽  
pp. 587-604 ◽  
Author(s):  
H.H. Pitz ◽  
R.D. Heil ◽  
U. Kneissl ◽  
S. Lindenstruth ◽  
U. Seemann ◽  
...  

2011 ◽  
Vol 26 (13) ◽  
pp. 925-935 ◽  
Author(s):  
DAVID B. CLINE

We briefly review the constraints on the search for low mass WIMPs (<15 GeV) and the various experimental methods. These experiments depend on the response of detectors to low energy signals (less than 15 keV equivalent energy). We then describe recent fits to the data and attempt to determine L eff , the energy response at low energy. We find that the use of a liquid Xenon two-phase detector that employs the S2 data near threshold is the most sensitive current study of the low mass region. We rely on some talks at Dark Matter 2010.


2016 ◽  
Vol 94 (3) ◽  
Author(s):  
Charles S. Epstein ◽  
Richard G. Milner

Author(s):  
A. Garg ◽  
W.A.T. Clark ◽  
J.P. Hirth

In the last twenty years, a significant amount of work has been done in the theoretical understanding of grain boundaries. The various proposed grain boundary models suggest the existence of coincidence site lattice (CSL) boundaries at specific misorientations where a periodic structure representing a local minimum of energy exists between the two crystals. In general, the boundary energy depends not only upon the density of CSL sites but also upon the boundary plane, so that different facets of the same boundary have different energy. Here we describe TEM observations of the dissociation of a Σ=27 boundary in silicon in order to reduce its surface energy and attain a low energy configuration.The boundary was identified as near CSL Σ=27 {255} having a misorientation of (38.7±0.2)°/[011] by standard Kikuchi pattern, electron diffraction and trace analysis techniques. Although the boundary appeared planar, in the TEM it was found to be dissociated in some regions into a Σ=3 {111} and a Σ=9 {122} boundary, as shown in Fig. 1.


Author(s):  
G. G. Hembree ◽  
Luo Chuan Hong ◽  
P.A. Bennett ◽  
J.A. Venables

A new field emission scanning transmission electron microscope has been constructed for the NSF HREM facility at Arizona State University. The microscope is to be used for studies of surfaces, and incorporates several surface-related features, including provision for analysis of secondary and Auger electrons; these electrons are collected through the objective lens from either side of the sample, using the parallelizing action of the magnetic field. This collimates all the low energy electrons, which spiral in the high magnetic field. Given an initial field Bi∼1T, and a final (parallelizing) field Bf∼0.01T, all electrons emerge into a cone of semi-angle θf≤6°. The main practical problem in the way of using this well collimated beam of low energy (0-2keV) electrons is that it is travelling along the path of the (100keV) probing electron beam. To collect and analyze them, they must be deflected off the beam path with minimal effect on the probe position.


Author(s):  
Bertholdand Senftinger ◽  
Helmut Liebl

During the last few years the investigation of clean and adsorbate-covered solid surfaces as well as thin-film growth and molecular dynamics have given rise to a constant demand for high-resolution imaging microscopy with reflected and diffracted low energy electrons as well as photo-electrons. A recent successful implementation of a UHV low-energy electron microscope by Bauer and Telieps encouraged us to construct such a low energy electron microscope (LEEM) for high-resolution imaging incorporating several novel design features, which is described more detailed elsewhere.The constraint of high field strength at the surface required to keep the aberrations caused by the accelerating field small and high UV photon intensity to get an improved signal-to-noise ratio for photoemission led to the design of a tetrode emission lens system capable of also focusing the UV light at the surface through an integrated Schwarzschild-type objective. Fig. 1 shows an axial section of the emission lens in the LEEM with sample (28) and part of the sample holder (29). The integrated mirror objective (50a, 50b) is used for visual in situ microscopic observation of the sample as well as for UV illumination. The electron optical components and the sample with accelerating field followed by an einzel lens form a tetrode system. In order to keep the field strength high, the sample is separated from the first element of the einzel lens by only 1.6 mm. With a numerical aperture of 0.5 for the Schwarzschild objective the orifice in the first element of the einzel lens has to be about 3.0 mm in diameter. Considering the much smaller distance to the sample one can expect intense distortions of the accelerating field in front of the sample. Because the achievable lateral resolution depends mainly on the quality of the first imaging step, careful investigation of the aberrations caused by the emission lens system had to be done in order to avoid sacrificing high lateral resolution for larger numerical aperture.


Sign in / Sign up

Export Citation Format

Share Document