Elicitors and Defense Gene Activation in Cultured Cells

Author(s):  
Richard A. Dixon ◽  
Arvind D. Choudhary ◽  
Robert Edwards ◽  
Maria J. Harrison ◽  
Christopher J. Lamb ◽  
...  
2020 ◽  
Vol 117 (48) ◽  
pp. 30805-30815
Author(s):  
Mingzhe Shen ◽  
Chae Jin Lim ◽  
Junghoon Park ◽  
Jeong Eun Kim ◽  
Dongwon Baek ◽  
...  

Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.


2005 ◽  
Vol 95 (4) ◽  
pp. 345-353 ◽  
Author(s):  
Kui Wen ◽  
Philippe Seguin ◽  
Marc St.-Arnaud ◽  
Suha Jabaji-Hare

Certain isolates of nonpathogenic binucleate Rhizoctonia spp. (np-BNR) are effective biocontrol agents against seedling root rot and damping-off. Inoculation of bean seed with np-BNR strain 232-CG at sowing reduced disease symptoms in bean (Phaseolus vulgaris) seedlings caused by R. solani. Molecular analyses of the spatial expression of three defense-associated genes were carried out using real-time quantitative reverse transcription-polymerase chain reaction (QRT-PCR) assays. This method allowed accurate quantitative evaluation of transcript levels of pG101 encoding for 1,3-β-D-glucanase, gPAL1 encoding for phenylalanine ammonia lyase, and CHS17 encoding for chalcone synthase in 1- and 2-week-old bean seedlings that were inoculated simultaneously with np-BNR and infected with R. solani, and in seedlings that were singly inoculated with either fungi or not inoculated. In the seedlings that were infected with R. solani only, results revealed that, following infection, activation of all defense-associated gene transcripts was achieved with significant increases ranging from 7- to 40-fold greater than the control, depending on the defense gene and tissue analyzed. Seedlings that were treated with np-BNR and infected with R. solani had expression similar to those that were treated with np-BNR only, but the levels were significantly down-regulated compared with those that were infected with R. solani only. These findings indicate that disease suppression by np-BNR isolate is not correlated to pG101, gPAL1, and CHS17 gene activation.


2015 ◽  
Vol 112 (26) ◽  
pp. E3327-E3336 ◽  
Author(s):  
Wei-wei Gao ◽  
Rong-quan Xiao ◽  
Bing-ling Peng ◽  
Huan-teng Xu ◽  
Hai-feng Shen ◽  
...  

Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain–containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70’s function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control.


2008 ◽  
Vol 98 (11) ◽  
pp. 1226-1232 ◽  
Author(s):  
M. A. B. Herman ◽  
J. K. Davidson ◽  
C. D. Smart

Plant activators provide an appealing management option for bacterial diseases of greenhouse-grown tomatoes. Two types of plant activators, one that induces systemic acquired resistance (SAR) and a second that activates induced systemic resistance (ISR), were evaluated for control of Pseudomonas syringae pv. tomato and effect on plant defense gene activation. Benzothiadiazole (BTH, SAR-inducing compound) effectively reduced bacterial speck incidence and severity, both alone and in combination with the ISR-inducing product. Application of BTH also led to elevated activation of salicylic acid and ethylene-mediated responses, based on real-time polymerase chain reaction analysis of marker gene expression levels. In contrast, the ISR-inducing product (made up of plant growth-promoting rhizobacteria) inconsistently modified defense gene expression and did not provide disease control to the same level as did BTH. No antagonism was observed by combining the two activators as control of bacterial speck was similar to or better than BTH alone.


2018 ◽  
Vol 115 (40) ◽  
pp. 10178-10183 ◽  
Author(s):  
Chi Tam Nguyen ◽  
Andrzej Kurenda ◽  
Stéphanie Stolz ◽  
Aurore Chételat ◽  
Edward E. Farmer

The identity of the cell files necessary for the leaf-to-leaf transmission of wound signals plants has been debated for decades. InArabidopsis, wounding initiates the glutamate receptor-like (GLR)–dependent propagation of membrane depolarizations that lead to defense gene activation. Using a vein extraction procedure we found pools of GLR-fusion proteins in endomembranes in phloem sieve elements and/or in xylem contact cells. Strikingly, only double mutants that eliminated GLRs from both of these spatially separated cell types strongly attenuated leaf-to-leaf electrical signaling.glr3.3mutants were also compromised in their defense against herbivores. Since wounding is known to cause increases in cytosolic calcium, we monitored electrical signals and Ca2+transients simultaneously. This revealed that wound-induced membrane depolarizations in the wild-type preceded cytosolic Ca2+maxima. The axial and radial distributions of calcium fluxes were differentially affected in eachglrmutant. Resolving a debate over which cell types are necessary for electrical signaling between leaves, we show that phloem sieve elements and xylem contact cells function together in this process.


2004 ◽  
Vol 24 (15) ◽  
pp. 6728-6741 ◽  
Author(s):  
Susan Erster ◽  
Motohiro Mihara ◽  
Roger H. Kim ◽  
Oleksi Petrenko ◽  
Ute M. Moll

ABSTRACT p53 promotes apoptosis in response to death stimuli by transactivation of target genes and by transcription-independent mechanisms. We recently showed that wild-type p53 rapidly translocates to mitochondria in response to multiple death stimuli in cultured cells. Mitochondrial p53 physically interacts with antiapoptotic Bcl proteins, induces Bak oligomerization, permeabilizes mitochondrial membranes, and rapidly induces cytochrome c release. Here we characterize the mitochondrial p53 response in vivo. Mice were subjected to γ irradiation or intravenous etoposide administration, followed by cell fractionation and immunofluorescence studies of various organs. Mitochondrial p53 accumulation occurred in radiosensitive organs like thymus, spleen, testis, and brain but not in liver and kidney. Of note, mitochondrial p53 translocation was rapid (detectable at 30 min in thymus and spleen) and triggered an early wave of marked caspase 3 activation and apoptosis. This caspase 3-mediated apoptosis was entirely p53 dependent, as shown by p53 null mice, and preceded p53 target gene activation. The transcriptional p53 program had a longer lag phase than the rapid mitochondrial p53 program. In thymus, the earliest apoptotic target gene products PUMA, Noxa, and Bax appeared at 2, 4, and 8 h, respectively, while Bid, Killer/DR5, and p53DinP1 remained uninduced even after 20 h. Target gene induction then led to further increase in active caspase 3. Similar biphasic kinetics was seen in cultured human cells. Our results suggest that in sensitive organs mitochondrial p53 accumulation in vivo occurs soon after a death stimulus, triggering a rapid first wave of apoptosis that is transcription independent and may precede a second slower wave that is transcription dependent.


1995 ◽  
Vol 92 (10) ◽  
pp. 4150-4157 ◽  
Author(s):  
K. Hahlbrock ◽  
D. Scheel ◽  
E. Logemann ◽  
T. Nurnberger ◽  
M. Parniske ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document