Measurement of Extrapulmonary Lung Water

Author(s):  
A. Net ◽  
C. Triginer
Keyword(s):  
Author(s):  
Tomoo Kawada ◽  
Michio Arakawa ◽  
Kenjiro Kambara ◽  
Takashi Segawa ◽  
Fumio Ando ◽  
...  

We know that alloxan causes increased-permeability pulmonary edema and that alloxan generates oxygen radicals (H2O2, O2−, ·OH) in blood. Therefore, we hypothesize that alloxan-generated oxygen radicals damage pulmonary capillary endothelial cells, and, possibly, alveolar epithelial cells as well. We examined whether oxygen radical scavengers, such as catalase or dimethylsulfoxide (DMSO), protected against alloxaninduced pulmonary edema.Five dogs in each following group were anesthetized: control group: physiological saline (20ml/kg/h); alloxan group: physiological saline + alloxan (75mg/kg) bolus injection at the beginning of the experiment; catalase group: physiological saline + catalase (150,000u/kg) bolus injection before injection of alloxan; DMSO group: physiological saline + DMSO (0.4mg/kg) bolus injection before alloxan. All dogs had 30-min baseline period and 3-h intervention period. Hemodynamics and circulating substances were measured at the specific points of time. At the end of intervention period, the dogs were killed and had the lungs removed for electron microscopic study and lung water measurement with direct destructive method.


2021 ◽  
pp. 1-13
Author(s):  
Abhilash Koratala ◽  
Amir Kazory

<b><i>Background:</i></b> Lingering congestion portends poor outcomes in patients with heart failure (HF) and is a key target in their management. Studies have shown that physical exam has low yield in this setting and conventional methods for more precise assessment and monitoring of volume status (e.g., body weight, natriuretic peptides, and chest radiography) have significant inherent shortcomings. <b><i>Summary:</i></b> Point of care ultrasonography (POCUS) is a noninvasive versatile bedside diagnostic tool that enhances the sensitivity of conventional physical examination to gauge congestion in these patients. It also aids in monitoring the efficacy of decongestive therapy and bears prognostic significance. In this narrative review, we discuss the role of focused sonographic assessment of the heart, venous system, and extravascular lung water/ascites (i.e., the pump, pipes, and the leaks) in objective assessment of fluid volume status. <b><i>Key Messages:</i></b> Since each of the discussed components of POCUS has its limitations, a combinational ultrasound evaluation guided by the main clinical features would be the key to reliable assessment and effective management of congestion in patients with HF.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Rui Shi ◽  
Christopher Lai ◽  
Jean-Louis Teboul ◽  
Martin Dres ◽  
Francesca Moretto ◽  
...  

Abstract Background In acute respiratory distress syndrome (ARDS), extravascular lung water index (EVLWi) and pulmonary vascular permeability index (PVPI) measured by transpulmonary thermodilution reflect the degree of lung injury. Whether EVLWi and PVPI are different between non-COVID-19 ARDS and the ARDS due to COVID-19 has never been reported. We aimed at comparing EVLWi, PVPI, respiratory mechanics and hemodynamics in patients with COVID-19 ARDS vs. ARDS of other origin. Methods Between March and October 2020, in an observational study conducted in intensive care units from three university hospitals, 60 patients with COVID-19-related ARDS monitored by transpulmonary thermodilution were compared to the 60 consecutive non-COVID-19 ARDS admitted immediately before the COVID-19 outbreak between December 2018 and February 2020. Results Driving pressure was similar between patients with COVID-19 and non-COVID-19 ARDS, at baseline as well as during the study period. Compared to patients without COVID-19, those with COVID-19 exhibited higher EVLWi, both at the baseline (17 (14–21) vs. 15 (11–19) mL/kg, respectively, p = 0.03) and at the time of its maximal value (24 (18–27) vs. 21 (15–24) mL/kg, respectively, p = 0.01). Similar results were observed for PVPI. In COVID-19 patients, the worst ratio between arterial oxygen partial pressure over oxygen inspired fraction was lower (81 (70–109) vs. 100 (80–124) mmHg, respectively, p = 0.02) and prone positioning and extracorporeal membrane oxygenation (ECMO) were more frequently used than in patients without COVID-19. COVID-19 patients had lower maximal lactate level and maximal norepinephrine dose than patients without COVID-19. Day-60 mortality was similar between groups (57% vs. 65%, respectively, p = 0.45). The maximal value of EVLWi and PVPI remained independently associated with outcome in the whole cohort. Conclusion Compared to ARDS patients without COVID-19, patients with COVID-19 had similar lung mechanics, but higher EVLWi and PVPI values from the beginning of the disease. This was associated with worse oxygenation and with more requirement of prone positioning and ECMO. This is compatible with the specific lung inflammation and severe diffuse alveolar damage related to COVID-19. By contrast, patients with COVID-19 had fewer hemodynamic derangement. Eventually, mortality was similar between groups. Trial registration number and date of registration ClinicalTrials.gov (NCT04337983). Registered 30 March 2020—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04337983.


2008 ◽  
Vol 43 (6) ◽  
pp. 470-480 ◽  
Author(s):  
Romain Viard ◽  
Pierre Tourneux ◽  
Laurent Storme ◽  
Julie-Marie Girard ◽  
Nacim Betrouni ◽  
...  

2004 ◽  
Vol 145 (4) ◽  
pp. 503-507 ◽  
Author(s):  
Eleri W. Adams ◽  
Michael C. Harrison ◽  
Serena J. Counsell ◽  
Joanna M. Allsop ◽  
Nigel L. Kennea ◽  
...  

1979 ◽  
Vol 47 (6) ◽  
pp. 1228-1233 ◽  
Author(s):  
D. S. Simon ◽  
J. F. Murray ◽  
N. C. Staub

We evaluated the attenuation of the 122 keV gamma ray of cobalt-57 across the thorax of anesthetized dogs as a method for following the time course of lung water changes in acute pulmonary edema induced by either increased microvascular permeability or increased microvascular hydrostatic pressure. The gamma rays traversed the thorax centered on the seventh rib laterally where the lung mass in the beam path was greatest. Calibration measurements in isolated lung lobes demonstrated the high sensitivity and inherent accuracy of the method over a wide range of lung water contents. In control dogs reproducibility averaged +/-3%. Increased permeability edema led to large rapid increases in the transthoracic gamma ray attenuation (TGA), while increased pressure caused an immediate, modest increase in TGA (vascular congestion) followed by a slow further increase over 2 h. There was a fairly good correlation between the increase in extravascular lung water and the change in TGA. The method is simple, safe, and noninvasive and appears to be useful for following the time course of lung water accumulation in generalized lung edema in anesthetized animals.


Sign in / Sign up

Export Citation Format

Share Document