Conversion of Kinetic Energy (Wind Power) into Electrical Energy

Wind Energy ◽  
1981 ◽  
pp. 67-85
Author(s):  
L. Jarass ◽  
L. Hoffmann ◽  
A. Jarass ◽  
G. Obermair
2010 ◽  
Vol 14 (2) ◽  
pp. 533-540 ◽  
Author(s):  
Naim Afgan ◽  
Dejan Cvetinovic

A wind energy system transforms the kinetic energy of wind into mechanical or electrical energy that can be harnessed for practical use. Mechanical energy is most commonly used for pumping water in rural or remote locations. Electrical energy is obtained by connecting wind turbine with the electricity generator. The performance of the wind power plant depends on the wind kinetic energy. It depends on the number of design parameter of the wind turbine. For the wind power plant the wind kinetic energy conversion depends on the average wind velocity, mechanical energy conversion into electricity, and electricity transmission. Resilience of the wind power plant is the capacity of the system to withstand changes of the following parameters: wind velocity, mechanical energy conversion into electricity, electricity transmission efficiency and electricity cost. Resilience index comprise following indicators: change in wind velocity, change in mechanical energy conversion efficiency, change in conversion factor, change in transmission efficiency, and change in electricity cost. The demonstration of the resilience index monitoring is presented by using following indicators, namely: average wind velocity, power production, efficiency of electricity production, and power-frequency change. In evaluation of the resilience index of wind power plants special attention is devoted to the determination of the resilience index for situation with priority given to individual indicators.


2021 ◽  
Vol 19 (1) ◽  
pp. 27-36
Author(s):  
Laurian GHERMAN ◽  
◽  
Marian PEARSICA ◽  

The development of our society now depends on electrical energy and the demand for electrical power increases yearly. Due to the vast amount of carbon dioxide released in the atmosphere by conventional power plants and the negative influence on the climate, new ways of producing electricity must be developed. A gyroscope consists of a spinning flywheel of mass m mounted in a suspension frame that allows the flywheel’s axle to point in any direction. In this analysis, one end of the axle is supported by a pylon situated at a distance R from the center of mass of the spinning flywheel. In order to generate electrical energy at this low speed, the same approach should be used as in wind power electrical generators. In this case, the wind and propeller are substituted by a gyroscopic system and gravitational attraction. Based on the conservation of angular momentum, the gravitational attraction can be used to create a precession strong enough to provide the energy and torque necessary to activate an electric generator similar to those in wind power generators. Instead of recovering the energy from this kinetic energy, we can use the precession rotation created by gravitational attraction to create the necessary kinetic energy.


Author(s):  
Я.М. КАШИН ◽  
Л.Е. КОПЕЛЕВИЧ ◽  
А.В. САМОРОДОВ ◽  
Ч. ПЭН

Описаны конструктивные особенности трехвходовой аксиальной генераторной установки (ТАГУ), преобразующей кинетическую энергию ветра и световую энергию солнца и суммирующей механическую, световую и тепловую энергию с одновременным преобразованием полученной суммарной энергии в электрическую. Показаны преимущества ТАГУ перед двухвходовыми генераторными установками. Дополнительное включение стабилизатора напряжения в схему ТАГУ позволило расширить область применения стабилизированной трехвходовой аксиальной генераторной установки за счет стабилизации ее выходного напряжения. The design features of the three-input axial generating installation (TAGI), which converts the kinetic energy of wind and light energy of the sun and sums the mechanical, light and thermal energy with the simultaneous conversion of the total energy into electrical energy, are described. The benefits of TAGI in front of the two-input generating installation shown. The additional introduction of a voltage regulator into the TAGI scheme allowed to expand the scope of the stabilized three-input axial generating installation by stabilizing its output voltage.


2015 ◽  
Vol 25 (12) ◽  
pp. 1550171 ◽  
Author(s):  
Mattia Coccolo ◽  
Grzegorz Litak ◽  
Jesús M. Seoane ◽  
Miguel A. F. Sanjuán

In this paper, we study the vibrational resonance (VR) phenomenon as a useful mechanism for energy harvesting purposes. A system, driven by a low frequency and a high frequency forcing, can give birth to the vibrational resonance phenomenon, when the two forcing amplitudes resonate and a maximum in amplitude is reached. We apply this idea to a bistable oscillator that can convert environmental kinetic energy into electrical energy, that is, an energy harvester. Normally, the VR phenomenon is studied in terms of the forcing amplitudes or of the frequencies, that are not always easy to adjust and change. Here, we study the VR generated by tuning another parameter that is possible to manipulate when the forcing values depend on the environmental conditions. We have investigated the dependence of the maximum response due to the VR for small and large variations in the forcing amplitudes and frequencies. Besides, we have plotted color coded figures in the space of the two forcing amplitudes, in which it is possible to appreciate different patterns in the electrical power generated by the system. These patterns provide useful information on the forcing amplitudes in order to produce the optimal electrical power.


2014 ◽  
Vol 590 ◽  
pp. 48-52
Author(s):  
Jie Hong Li ◽  
Ming Jing Cai ◽  
Long Han Xie

This paper presented a magnetic pendulum to scavenge the human kinetic energy from arm motion and convert the kinetic energy to electrical energy for portable electronic devices. The harvester mainly consisted of a stator, a rotor and a control circuit. The stator was set of electric coils while the rotor is an eccentric mass made of permanent magnet. A torsion spring was also added onto the rotor such that the motions in both horizontal and vertical directions can be effectively harvested. The energy harvester could be worn on human arm. When the arm was in motion, the device would then generate power. The paper presented a detailed kinematical analysis and power conversion analysis. As a typical case, the device was 40 mm in diameter and 50 g in weight, the simulation showed that when worn on wrist, it could generate about 30 mW during normal walking.


2015 ◽  
Vol 112 (36) ◽  
pp. 11169-11174 ◽  
Author(s):  
Lee M. Miller ◽  
Nathaniel A. Brunsell ◽  
David B. Mechem ◽  
Fabian Gans ◽  
Andrew J. Monaghan ◽  
...  

Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 105 km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m−2, whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m−2, with VKE capturing this combination in a comparatively simple way.


2014 ◽  
Vol 626 ◽  
pp. 177-183
Author(s):  
K. Thenmalar ◽  
S. Ramesh ◽  
K.S. Anuja

The electrical power system is considered as the most complex man-made systems mainly due to their wide geographical coverage. Electrical energy industries contributes environmental pollution which rise questions concern environmental protection and methods of eliminating or reducing pollution from power plants either by design or by operational strategies. Electric power plants are mainly aimed to operate al low fuel cost strategies .In this paper a Multi –Objective Economic Emission Load Dispatch problem is solved to minimize the emission of nitrogen oxides (NOx) , oxides of other fuels that release during generation of electricity and fuel cost considering both Thermal generators and Wind turbines. A large number of iterations and oscillation are those of the major concern in solving the economic load dispatch problem by using the BFO(bacterial foraging optimization) method. By applying BFO method the economic dispatch problem is optimized to minimize the total generation cost of a power system while satisfying various equality and inequality constraints. The effect of Wind power on overall emission is also investigated here using Quadratic programming by wolf’s method. This method has better convergence characteristic. Wolf’s method is an extended simplex procedure which can be applied to Quadratic programming problems in which all the problem variables are non-negative.


Utilization of renewable energy for the reduction of fuel consumption and green house gas (GHG) emissions in the shipping industry has been increased rapidly in the recent years. Wind energy is a clean renewable energy with no pollution which is abundantly available at sea. This paper proposes two different possible configurations of connecting wind power energy into the ship’s main grid bus system . Wind electrical energy output has been connected to ship’s main ac bus system in one configuration and it is connected to ship’s main dc bus system. Even though Wind assisted ship propulsion (WASP) had been started already in the last decades in the form of wing sails, kites, Flettener rotor etc which could assist auxiliary propulsion of the ships, the application of wind power generator on the ship is not often applied. Therefore this paper has a relevant significance in applying wind electrical energy for the marine electrical power system needs. This paper also reveals the benefits and challenges in the area of onboard wind generation and opens future research possibilities in integrating wind energy into marine industry.


Author(s):  
Arpit Gupta

Energy generation has seen significant development in recent years. This investigation describes a new technique for generating energy from the waste kinetic energy of the vehicles speed & the practical side we have been able to produce and store electrical energy using the vehicle minimum speed also without any extra cost for the land.If our concept is implementation throughout India, it not only increases the power generation to more than a few gig watts of electricity but also has other various fringe benefits including longer road life, employment generation, reduced CO2 emission in environment.


Sign in / Sign up

Export Citation Format

Share Document